1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/pkg/tinydtls/contrib/sock_dtls.c
2023-12-06 19:07:59 +01:00

1025 lines
32 KiB
C

/*
* Copyright (C) 2019 HAW Hamburg
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @{
*
* @file
* @brief tinydtls implementation of @ref net_sock_dtls
*
* @author Aiman Ismail <muhammadaimanbin.ismail@haw-hamburg.de>
* @author Leandro Lanzieri <leandro.lanzieri@haw-hamburg.de>
* @author Hendrik van Essen <hendrik.ve@fu-berlin.de>
*/
#include <assert.h>
#include "dtls.h"
#include "log.h"
#include "net/sock/dtls.h"
#include "net/credman.h"
#include "ztimer.h"
#if SOCK_HAS_ASYNC
#include "net/sock/async.h"
#include "net/sock/async/event.h"
#endif
#define ENABLE_DEBUG 0
#include "debug.h"
#include "dtls_debug.h"
#ifdef CONFIG_DTLS_PSK
static int _get_psk_info(struct dtls_context_t *ctx, const session_t *session,
dtls_credentials_type_t type,
const unsigned char *id, size_t id_len,
unsigned char *result, size_t result_length);
#endif /* CONFIG_DTLS_PSK */
#ifdef CONFIG_DTLS_ECC
static int _get_ecdsa_key(struct dtls_context_t *ctx, const session_t *session,
const dtls_ecdsa_key_t **result);
static int _verify_ecdsa_key(struct dtls_context_t *ctx,
const session_t *session,
const unsigned char *other_pub_x,
const unsigned char *other_pub_y,
size_t key_size);
#endif /* CONFIG_DTLS_ECC */
static int _write(struct dtls_context_t *ctx, session_t *session, uint8_t *buf,
size_t len);
static int _read(struct dtls_context_t *ctx, session_t *session, uint8_t *buf,
size_t len);
static int _event(struct dtls_context_t *ctx, session_t *session,
dtls_alert_level_t level, unsigned short code);
static void _session_to_ep(const session_t *session, sock_udp_ep_t *ep);
static void _ep_to_session(const sock_udp_ep_t *ep, session_t *session);
static uint32_t _update_timeout(uint32_t start, uint32_t timeout);
static dtls_handler_t _dtls_handler = {
.event = _event,
.write = _write,
.read = _read,
#ifdef CONFIG_DTLS_PSK
.get_psk_info = _get_psk_info,
#endif /* CONFIG_DTLS_PSK */
#ifdef CONFIG_DTLS_ECC
.get_ecdsa_key = _get_ecdsa_key,
.verify_ecdsa_key = _verify_ecdsa_key,
#endif /* CONFIG_DTLS_ECC */
};
#ifdef CONFIG_DTLS_ECC
/**
* @brief Array of ECDSA keys to convert from credman credentials and send in
* the callback.
*/
typedef struct ecdsa_key_assignment {
dtls_ecdsa_key_t key;
const session_t *session;
} ecdsa_key_assignment_t;
static ecdsa_key_assignment_t _ecdsa_keys[CONFIG_DTLS_CREDENTIALS_MAX];
#endif
static int _read(struct dtls_context_t *ctx, session_t *session, uint8_t *buf, size_t len)
{
sock_dtls_t *sock = dtls_get_app_data(ctx);
DEBUG("sock_dtls: decrypted message arrived\n");
sock->buffer.data = buf;
sock->buffer.datalen = len;
sock->buffer.session = session;
#ifdef SOCK_HAS_ASYNC
if (sock->async_cb != NULL) {
/* reset retrievable event session */
memset(&sock->async_cb_session, 0, sizeof(sock->async_cb_session));
sock->async_cb(sock, SOCK_ASYNC_MSG_RECV, sock->async_cb_arg);
}
#endif
return len;
}
static int _write(struct dtls_context_t *ctx, session_t *session, uint8_t *buf, size_t len)
{
sock_dtls_t *sock = (sock_dtls_t *)dtls_get_app_data(ctx);
sock_udp_ep_t remote;
_session_to_ep(session, &remote);
ssize_t res = sock_udp_send(sock->udp_sock, buf, len, &remote);
if (res < 0) {
DEBUG("sock_dtls: failed to send DTLS record: %d\n", (int)res);
}
return res;
}
static int _event(struct dtls_context_t *ctx, session_t *session,
dtls_alert_level_t level, unsigned short code)
{
sock_dtls_t *sock = dtls_get_app_data(ctx);
msg_t msg = { .type = code, .content.ptr = session };
if (IS_ACTIVE(ENABLE_DEBUG)) {
switch (code) {
case DTLS_EVENT_CONNECT:
DEBUG("sock_dtls: event connect\n");
break;
case DTLS_EVENT_CONNECTED:
DEBUG("sock_dtls: event connected\n");
break;
}
}
if (!level && (code != DTLS_EVENT_CONNECT)) {
mbox_put(&sock->mbox, &msg);
}
#if IS_ACTIVE(CONFIG_DTLS_ECC)
if (code == DTLS_EVENT_CONNECTED) {
for (unsigned i = 0; i < ARRAY_SIZE(_ecdsa_keys); i++) {
if (_ecdsa_keys[i].session && dtls_session_equals(session, _ecdsa_keys[i].session)) {
_ecdsa_keys[i].session = NULL;
break;
}
}
}
#endif
#ifdef SOCK_HAS_ASYNC
if (sock->async_cb != NULL) {
switch (code) {
case DTLS_ALERT_CLOSE_NOTIFY:
/* peer closed their session */
memcpy(&sock->async_cb_session, session, sizeof(session_t));
sock->async_cb(sock, SOCK_ASYNC_CONN_FIN, sock->async_cb_arg);
break;
case DTLS_EVENT_CONNECTED:
/* we received a session handshake initialization */
sock->async_cb(sock, SOCK_ASYNC_CONN_RECV,
sock->async_cb_arg);
break;
default:
break;
}
}
#endif
return 0;
}
#ifdef CONFIG_DTLS_PSK
static int _get_psk_info(struct dtls_context_t *ctx, const session_t *session,
dtls_credentials_type_t type,
const unsigned char *desc, size_t desc_len,
unsigned char *result, size_t result_length)
{
credman_credential_t credential;
sock_udp_ep_t ep;
sock_dtls_t *sock = dtls_get_app_data(ctx);
const void *c = NULL;
size_t c_len = 0;
_session_to_ep(session, &ep);
switch (type) {
case DTLS_PSK_HINT:
DEBUG("sock_dtls: psk hint request\n");
/* return a hint to the client if set */
c_len = strlen(sock->psk_hint);
if (c_len) {
c = sock->psk_hint;
break;
}
else {
DEBUG("sock_dtls: no hint provided\n");
return 0;
}
case DTLS_PSK_IDENTITY:
DEBUG("sock_dtls: psk id request\n");
/* if the application set a callback , try to select credential from there */
if (sock->client_psk_cb) {
DEBUG("sock_dtls: requesting the application\n");
credential.tag = sock->client_psk_cb(sock, &ep, sock->tags, sock->tags_len,
(const char *)desc, desc_len);
if (credential.tag != CREDMAN_TAG_EMPTY) {
int ret = credman_get(&credential, credential.tag, CREDMAN_TYPE_PSK);
if (ret == CREDMAN_OK) {
c = credential.params.psk.id.s;
c_len = credential.params.psk.id.len;
break;
}
}
}
/* if no callback set or no valid credential returned, try to find a valid registered one */
DEBUG("sock_dtls: trying to get first PSK credential\n");
credman_credential_t first = { .tag = CREDMAN_TAG_EMPTY };
for (unsigned i = 0; i < sock->tags_len && !c; i++) {
if (credman_get(&credential, sock->tags[i], CREDMAN_TYPE_PSK) == CREDMAN_OK) {
/* if no hint was provided, settle for the first valid credential */
if (!desc) {
c = credential.params.psk.id.s;
c_len = credential.params.psk.id.len;
break;
}
/* save the first valid one in case we don't find the hint */
if (first.tag == CREDMAN_TAG_EMPTY) {
memcpy(&first, &credential, sizeof(credman_credential_t));
}
if (desc_len == credential.params.psk.hint.len &&
!strncmp(credential.params.psk.hint.s, (const char *)desc, desc_len)) {
c = credential.params.psk.id.s;
c_len = credential.params.psk.id.len;
}
}
}
/* if no credential so far, fallback to the first valid one, return alert otherwise */
if (!c) {
if (first.tag != CREDMAN_TAG_EMPTY) {
c = first.params.psk.id.s;
c_len = first.params.psk.id.len;
}
else {
DEBUG("sock_dtls: could not find a valid PSK credential\n");
return dtls_alert_fatal_create(DTLS_ALERT_INTERNAL_ERROR);
}
}
break;
case DTLS_PSK_KEY:
DEBUG("sock_dtls: psk key request\n");
if (desc) {
DEBUG("sock_dtls: looking for key for ID: %.*s\n", (unsigned)desc_len, desc);
/* try to find matching ID among the registered credentials */
for (unsigned i = 0; i < sock->tags_len; i++) {
if (credman_get(&credential, sock->tags[i], CREDMAN_TYPE_PSK) == CREDMAN_OK) {
DEBUG("sock_dtls: comparing to tag %d, with ID: %.*s\n", sock->tags[i],
(unsigned)credential.params.psk.id.len,
(char *)credential.params.psk.id.s);
if (desc_len == credential.params.psk.id.len &&
!memcmp(desc, credential.params.psk.id.s, desc_len)) {
DEBUG("sock_dtls: found\n");
c = credential.params.psk.key.s;
c_len = credential.params.psk.key.len;
break;
}
}
}
}
break;
default:
DEBUG("sock:dtls unsupported request type: %d\n", type);
return dtls_alert_fatal_create(DTLS_ALERT_INTERNAL_ERROR);
}
if (c_len > result_length) {
DEBUG("sock_dtls: not enough memory for credential type: %d\n", type);
return dtls_alert_fatal_create(DTLS_ALERT_INTERNAL_ERROR);
}
if (c == NULL || c_len == 0) {
DEBUG("sock_dtls: invalid credential params for type %d\n", type);
return dtls_alert_fatal_create(DTLS_ALERT_INTERNAL_ERROR);
}
memcpy(result, c, c_len);
return c_len;
}
#endif /* CONFIG_DTLS_PSK */
#ifdef CONFIG_DTLS_ECC
static int _get_ecdsa_key(struct dtls_context_t *ctx, const session_t *session,
const dtls_ecdsa_key_t **result)
{
int ret = CREDMAN_ERROR;
sock_dtls_t *sock = (sock_dtls_t *)dtls_get_app_data(ctx);
sock_udp_ep_t ep;
_session_to_ep(session, &ep);
credman_credential_t credential;
credential.tag = CREDMAN_TAG_EMPTY;
DEBUG("sock_dtls: get ECDSA key\n");
/* if the application set a callback , try to select credential from there */
if (sock->rpk_cb) {
DEBUG("sock_dtls: requesting the application\n");
credential.tag = sock->rpk_cb(sock, &ep, sock->tags, sock->tags_len);
if (credential.tag != CREDMAN_TAG_EMPTY) {
ret = credman_get(&credential, credential.tag, CREDMAN_TYPE_ECDSA);
if (ret != CREDMAN_OK) {
credential.tag = CREDMAN_TAG_EMPTY;
}
}
}
if (credential.tag == CREDMAN_TYPE_EMPTY) {
/* if could not get credential try to fetch the first valid credential */
for (unsigned i = 0; i < sock->tags_len; i++) {
ret = credman_get(&credential, sock->tags[i], CREDMAN_TYPE_ECDSA);
if (ret == CREDMAN_OK) {
break;
}
}
if (ret != CREDMAN_OK) {
DEBUG("sock_dtls: no valid credential registered\n");
return dtls_alert_fatal_create(DTLS_ALERT_INTERNAL_ERROR);
}
}
/* try to find a free ECDSA key assignment structure for the handshake. When unused, the session
* is not set. */
ecdsa_key_assignment_t *key = NULL;
for (unsigned i = 0; i < CONFIG_DTLS_CREDENTIALS_MAX; i++) {
if (!_ecdsa_keys[i].session) {
key = &_ecdsa_keys[i];
}
}
if (!key) {
DEBUG("sock_dtls: ECDSA keys are full\n");
return dtls_alert_fatal_create(DTLS_ALERT_INTERNAL_ERROR);
}
key->session = session;
key->key.curve = DTLS_ECDH_CURVE_SECP256R1;
key->key.priv_key = credential.params.ecdsa.private_key;
key->key.pub_key_x = credential.params.ecdsa.public_key.x;
key->key.pub_key_y = credential.params.ecdsa.public_key.y;
*result = &key->key;
return 0;
}
static int _verify_ecdsa_key(struct dtls_context_t *ctx,
const session_t *session,
const unsigned char *other_pub_x,
const unsigned char *other_pub_y, size_t key_size)
{
(void)ctx;
(void)session;
(void)other_pub_y;
(void)other_pub_x;
(void)key_size;
return 0;
}
#endif /* CONFIG_DTLS_ECC */
int sock_dtls_create(sock_dtls_t *sock, sock_udp_t *udp_sock,
credman_tag_t tag, unsigned version, unsigned role)
{
assert(sock);
assert(udp_sock);
if (role != SOCK_DTLS_CLIENT && role != SOCK_DTLS_SERVER) {
DEBUG("sock_dtls: invalid role\n");
return -1;
}
/* check if tinydtls compiled with wanted DTLS version */
if (version < SOCK_DTLS_1_0 || version > SOCK_DTLS_1_3) {
DEBUG("sock_dtls: invalid version\n");
return -1;
}
else if ((version == SOCK_DTLS_1_2) &&
(DTLS_VERSION != 0xfefd)) {
DEBUG("sock_dtls: tinydtls not compiled with support for DTLS 1.2\n");
return -1;
}
else if (version == SOCK_DTLS_1_0 || version == SOCK_DTLS_1_3) {
DEBUG("sock_dtls: tinydtls only support DTLS 1.2\n");
return -1;
}
sock->udp_sock = udp_sock;
sock->buffer.data = NULL;
sock->psk_hint[0] = '\0';
sock->client_psk_cb = NULL;
sock->rpk_cb = NULL;
#ifdef SOCK_HAS_ASYNC
sock->async_cb = NULL;
sock->buf_ctx = NULL;
memset(&sock->async_cb_session, 0, sizeof(sock->async_cb_session));
#endif /* SOCK_HAS_ASYNC */
memset(sock->tags, CREDMAN_TAG_EMPTY, CONFIG_DTLS_CREDENTIALS_MAX * sizeof(credman_tag_t));
if (tag != CREDMAN_TAG_EMPTY) {
sock->tags_len = 1;
sock->tags[0] = tag;
}
else {
sock->tags_len = 0;
}
sock->role = role;
sock->dtls_ctx = dtls_new_context(sock);
if (!sock->dtls_ctx) {
DEBUG("sock_dtls: error getting DTLS context\n");
return -1;
}
mbox_init(&sock->mbox, sock->mbox_queue, SOCK_DTLS_MBOX_SIZE);
dtls_set_handler(sock->dtls_ctx, &_dtls_handler);
return 0;
}
int sock_dtls_set_server_psk_id_hint(sock_dtls_t *sock, const char *hint)
{
assert(sock);
if (strlen(hint) > CONFIG_DTLS_PSK_ID_HINT_MAX_SIZE) {
DEBUG("sock_dtls: could not set hint due to buffer size\n");
return -1;
}
strcpy(sock->psk_hint, hint);
return 0;
}
int sock_dtls_add_credential(sock_dtls_t *sock, credman_tag_t tag)
{
assert(sock);
if (sock->tags_len < CONFIG_DTLS_CREDENTIALS_MAX) {
DEBUG("sock_dtls: credential added in position %d\n", sock->tags_len);
sock->tags[sock->tags_len] = tag;
sock->tags_len++;
return 0;
}
DEBUG("sock_dtls: could not add new credential\n");
return -1;
}
int sock_dtls_remove_credential(sock_dtls_t *sock, credman_tag_t tag)
{
assert(sock);
int pos = -1;
for (unsigned i = 0; i < sock->tags_len; i++) {
if (sock->tags[i] == tag) {
pos = i;
DEBUG("sock_dtls: found credential to remove in position %i\n", pos);
break;
}
}
if (pos >= 0) {
sock->tags_len--;
for (; (unsigned)pos < sock->tags_len; pos++) {
sock->tags[pos] = sock->tags[pos + 1];
}
return 0;
}
else {
DEBUG("sock_dtls: could not find credential to remove\n");
return -1;
}
}
size_t sock_dtls_get_credentials(sock_dtls_t *sock, const credman_tag_t **out)
{
assert(sock);
assert(out);
*out = sock->tags;
return sock->tags_len;
}
void sock_dtls_set_client_psk_cb(sock_dtls_t *sock, sock_dtls_client_psk_cb_t cb)
{
assert(sock);
sock->client_psk_cb = cb;
}
void sock_dtls_set_rpk_cb(sock_dtls_t *sock, sock_dtls_rpk_cb_t cb)
{
assert(sock);
sock->rpk_cb = cb;
}
sock_udp_t *sock_dtls_get_udp_sock(sock_dtls_t *sock)
{
assert(sock);
return sock->udp_sock;
}
int sock_dtls_session_init(sock_dtls_t *sock, const sock_udp_ep_t *ep,
sock_dtls_session_t *remote)
{
assert(sock);
assert(ep);
assert(remote);
sock_udp_ep_t local;
if (!sock->udp_sock || (sock_udp_get_local(sock->udp_sock, &local) < 0)) {
return -EADDRNOTAVAIL;
}
if (ep->port == 0) {
return -EINVAL;
}
switch (ep->family) {
#ifdef SOCK_HAS_IPV4
case AF_INET:
break;
#endif
#ifdef SOCK_HAS_IPV6
case AF_INET6:
break;
#endif
default:
return -EINVAL;
}
/* prepare the remote party to connect to */
_ep_to_session(ep, &remote->dtls_session);
/* start the handshake */
int res = dtls_connect(sock->dtls_ctx, &remote->dtls_session);
if (res < 0) {
DEBUG("sock_dtls: error establishing a session: %d\n", res);
return -ENOMEM;
}
else if (res == 0) {
DEBUG("sock_dtls: session already exist. Skip establishing session\n");
return 0;
}
/* New handshake initiated */
return 1;
}
void sock_dtls_session_destroy(sock_dtls_t *sock, sock_dtls_session_t *remote)
{
dtls_peer_t *peer = dtls_get_peer(sock->dtls_ctx, &remote->dtls_session);
if (peer) {
/* dtls_reset_peer() also sends close_notify if not already sent */
dtls_reset_peer(sock->dtls_ctx, peer);
}
}
void sock_dtls_session_get_udp_ep(const sock_dtls_session_t *session,
sock_udp_ep_t *ep)
{
assert(session);
assert(ep);
_session_to_ep(&session->dtls_session, ep);
}
void sock_dtls_session_set_udp_ep(sock_dtls_session_t *session,
const sock_udp_ep_t *ep)
{
assert(session);
assert(ep);
_ep_to_session(ep, &session->dtls_session);
}
ssize_t sock_dtls_sendv_aux(sock_dtls_t *sock, sock_dtls_session_t *remote,
const iolist_t *snips, uint32_t timeout,
sock_dtls_aux_tx_t *aux)
{
(void)aux;
int res;
assert(sock);
assert(remote);
assert(snips);
/* check if session exists, if not create session first then send */
if (!dtls_get_peer(sock->dtls_ctx, &remote->dtls_session)) {
if (timeout == 0) {
return -ENOTCONN;
}
/* no session with remote, creating new session.
* This will also create new peer for this session */
res = dtls_connect(sock->dtls_ctx, &remote->dtls_session);
if (res < 0) {
DEBUG("sock_dtls: error initiating handshake\n");
return -ENOMEM;
}
else if (res > 0) {
/* handshake initiated, wait until connected or timed out */
msg_t msg;
bool is_timed_out = false;
do {
uint32_t start = ztimer_now(ZTIMER_USEC);
res = ztimer_msg_receive_timeout(ZTIMER_USEC, &msg, timeout);
if (timeout != SOCK_NO_TIMEOUT) {
timeout = _update_timeout(start, timeout);
is_timed_out = (res < 0) || (timeout == 0);
}
} while (!is_timed_out && (msg.type != DTLS_EVENT_CONNECTED));
if (is_timed_out && (msg.type != DTLS_EVENT_CONNECTED)) {
DEBUG("sock_dtls: handshake process timed out\n");
/* deletes peer created in dtls_connect() before */
dtls_peer_t *peer = dtls_get_peer(sock->dtls_ctx,
&remote->dtls_session);
dtls_reset_peer(sock->dtls_ctx, peer);
return -ETIMEDOUT;
}
}
}
const unsigned snip_count = iolist_count(snips);
uint8_t *snip_bufs[snip_count];
size_t snip_len[snip_count];
for (unsigned i = 0; snips; snips = snips->iol_next) {
snip_bufs[i] = snips->iol_base;
snip_len[i] = snips->iol_len;
++i;
}
res = dtls_writev(sock->dtls_ctx, &remote->dtls_session,
snip_bufs, snip_len, snip_count);
#ifdef SOCK_HAS_ASYNC
if ((res >= 0) && (sock->async_cb != NULL)) {
sock->async_cb(sock, SOCK_ASYNC_MSG_SENT, sock->async_cb_arg);
}
#endif /* SOCK_HAS_ASYNC */
return res;
}
#if SOCK_HAS_ASYNC
/**
* @brief Checks for and iterates for more data chunks within the network
* stacks anternal packet buffer
*
* When no more chunks exists, `data_ctx` assures cleaning up the internal
* buffer state and `sock_udp_recv_buf()` returns 0.
*
* @see @ref sock_udp_recv_buf().
*/
static void _check_more_chunks(sock_udp_t *udp_sock, void **data,
void **data_ctx, sock_udp_ep_t *remote)
{
ssize_t res;
while ((res = sock_udp_recv_buf(udp_sock, data, data_ctx, 0, remote)) > 0) {
/* TODO: remove and adapt _copy_buffer() to add remaining data when
* tinydtls supports chunked datagram payload */
if (IS_ACTIVE(DEVELHELP)) {
LOG_ERROR("sock_dtls: Chunked datagram payload currently not "
"supported yet by tinydtls\n");
}
}
}
#endif
static inline void _copy_session(sock_dtls_t *sock, sock_dtls_session_t *remote)
{
memcpy(&remote->dtls_session, sock->buffer.session,
sizeof(remote->dtls_session));
}
static ssize_t _copy_buffer(sock_dtls_t *sock, sock_dtls_session_t *remote,
void *data, size_t max_len)
{
uint8_t *buf = sock->buffer.data;
size_t buflen = sock->buffer.datalen;
sock->buffer.data = NULL;
if (buflen > max_len) {
return -ENOBUFS;
}
#if SOCK_HAS_ASYNC
sock_udp_ep_t ep;
_session_to_ep(&remote->dtls_session, &ep);
if (sock->buf_ctx != NULL) {
memcpy(data, buf, sock->buffer.datalen);
_copy_session(sock, remote);
_check_more_chunks(sock->udp_sock, (void **)&buf, &sock->buf_ctx,
&ep);
if (sock->async_cb &&
/* is there a message in the sock's mbox? */
mbox_avail(&sock->mbox)) {
if (sock->buffer.data) {
sock->async_cb(sock, SOCK_ASYNC_MSG_RECV,
sock->async_cb_arg);
}
else {
sock->async_cb(sock, SOCK_ASYNC_CONN_RECV,
sock->async_cb_arg);
}
}
return buflen;
}
#else
(void)remote;
#endif
/* use `memmove()` as tinydtls reuses `data` to store decrypted data with an
* offset in `buf`. This prevents problems with overlapping buffers. */
memmove(data, buf, buflen);
_copy_session(sock, remote);
return buflen;
}
static ssize_t _complete_handshake(sock_dtls_t *sock,
sock_dtls_session_t *remote,
const session_t *session)
{
memcpy(&remote->dtls_session, session, sizeof(remote->dtls_session));
#ifdef SOCK_HAS_ASYNC
if (sock->async_cb) {
sock_async_flags_t flags = SOCK_ASYNC_CONN_RDY;
if (mbox_avail(&sock->mbox)) {
if (sock->buffer.data) {
flags |= SOCK_ASYNC_MSG_RECV;
}
else {
flags |= SOCK_ASYNC_CONN_RECV;
}
}
memcpy(&sock->async_cb_session, session, sizeof(session_t));
sock->async_cb(sock, flags, sock->async_cb_arg);
}
#else
(void)sock;
#endif
return -SOCK_DTLS_HANDSHAKE;
}
ssize_t sock_dtls_recv_aux(sock_dtls_t *sock, sock_dtls_session_t *remote,
void *data, size_t max_len, uint32_t timeout,
sock_dtls_aux_rx_t *aux)
{
assert(sock);
assert(data);
assert(remote);
sock_udp_ep_t ep;
/* loop breaks when timeout or application data read */
while (1) {
ssize_t res;
uint32_t start_recv = ztimer_now(ZTIMER_USEC);
msg_t msg;
if (sock->buffer.data != NULL) {
return _copy_buffer(sock, remote, data, max_len);
}
else if (mbox_try_get(&sock->mbox, &msg) &&
msg.type == DTLS_EVENT_CONNECTED) {
return _complete_handshake(sock, remote, msg.content.ptr);
}
/* Crude way to somewhat test that `sock_dtls_aux_rx_t` and
* `sock_udp_aux_rx_t` remain compatible: */
static_assert(sizeof(sock_dtls_aux_rx_t) == sizeof(sock_udp_aux_rx_t),
"sock_dtls_aux_rx_t became incompatible with "
"sock_udp_aux_rx_t");
res = sock_udp_recv_aux(sock->udp_sock, data, max_len, timeout,
&ep, (sock_udp_aux_rx_t *)aux);
if (res <= 0) {
DEBUG("sock_dtls: error receiving UDP packet: %d\n", (int)res);
return res;
}
_ep_to_session(&ep, &remote->dtls_session);
res = dtls_handle_message(sock->dtls_ctx, &remote->dtls_session,
(uint8_t *)data, res);
if ((timeout != SOCK_NO_TIMEOUT) && (timeout != 0)) {
timeout = _update_timeout(start_recv, timeout);
}
if (timeout == 0) {
DEBUG("sock_dtls: timed out while decrypting message\n");
return -ETIMEDOUT;
}
}
}
ssize_t sock_dtls_recv_buf_aux(sock_dtls_t *sock, sock_dtls_session_t *remote,
void **data, void **buf_ctx, uint32_t timeout,
sock_dtls_aux_rx_t *aux)
{
assert(sock);
assert(data);
assert(buf_ctx);
assert(remote);
sock_udp_ep_t ep;
/* 2nd call to the function (with ctx set) will free the data */
if (*buf_ctx) {
int res = sock_udp_recv_buf_aux(sock->udp_sock, data, buf_ctx,
timeout, &ep, (sock_udp_aux_rx_t *)aux);
assert(res == 0);
return res;
}
/* loop breaks when timeout or application data read */
while (1) {
ssize_t res;
uint32_t start_recv = ztimer_now(ZTIMER_USEC);
msg_t msg;
if (sock->buffer.data != NULL) {
*data = sock->buffer.data;
sock->buffer.data = NULL;
_copy_session(sock, remote);
return sock->buffer.datalen;
}
else if (mbox_try_get(&sock->mbox, &msg) &&
msg.type == DTLS_EVENT_CONNECTED) {
return _complete_handshake(sock, remote, msg.content.ptr);
}
/* Crude way to somewhat test that `sock_dtls_aux_rx_t` and
* `sock_udp_aux_rx_t` remain compatible: */
static_assert(sizeof(sock_dtls_aux_rx_t) == sizeof(sock_udp_aux_rx_t),
"sock_dtls_aux_rx_t became incompatible with "
"sock_udp_aux_rx_t");
res = sock_udp_recv_buf_aux(sock->udp_sock, data, buf_ctx,
timeout, &ep, (sock_udp_aux_rx_t *)aux);
if (res == 0) {
continue;
}
if (res < 0) {
DEBUG("sock_dtls: error receiving UDP packet: %d\n", (int)res);
return res;
}
_ep_to_session(&ep, &remote->dtls_session);
res = dtls_handle_message(sock->dtls_ctx, &remote->dtls_session,
*data, res);
if ((timeout != SOCK_NO_TIMEOUT) && (timeout != 0)) {
timeout = _update_timeout(start_recv, timeout);
}
if (timeout == 0) {
DEBUG("sock_dtls: timed out while decrypting message\n");
return -ETIMEDOUT;
}
}
}
void sock_dtls_close(sock_dtls_t *sock)
{
dtls_free_context(sock->dtls_ctx);
}
void sock_dtls_init(void)
{
dtls_init();
}
static void _ep_to_session(const sock_udp_ep_t *ep, session_t *session)
{
dtls_session_init(session);
session->addr.family = ep->family;
session->addr.port = ep->port;
switch (ep->family) {
#ifdef SOCK_HAS_IPV4
case AF_INET:
session->ifindex = SOCK_ADDR_ANY_NETIF;
memcpy(&session->addr.ipv4, &ep->addr.ipv4, sizeof(session->addr.ipv4));
break;
#endif
#ifdef SOCK_HAS_IPV6
case AF_INET6:
if (ipv6_addr_is_link_local((ipv6_addr_t *)ep->addr.ipv6)) {
/* set ifindex for link-local addresses */
session->ifindex = ep->netif;
}
else {
session->ifindex = SOCK_ADDR_ANY_NETIF;
}
memcpy(&session->addr.ipv6, &ep->addr.ipv6, sizeof(session->addr.ipv6));
break;
#endif
default:
assert(0);
return;
}
}
static void _session_to_ep(const session_t *session, sock_udp_ep_t *ep)
{
ep->port = session->addr.port;
ep->netif = session->ifindex;
ep->family = session->addr.family;
switch (session->addr.family) {
#ifdef SOCK_HAS_IPV4
case AF_INET:
memcpy(&ep->addr.ipv4, &session->addr.ipv4, sizeof(ep->addr.ipv4));
break;
#endif
#ifdef SOCK_HAS_IPV6
case AF_INET6:
memcpy(&ep->addr.ipv6, &session->addr.ipv6, sizeof(ep->addr.ipv6));
break;
#endif
default:
/* addr_family is actually ok to be 0 when coming from _copy_buffer */
return;
}
}
static inline uint32_t _update_timeout(uint32_t start, uint32_t timeout)
{
uint32_t diff = (ztimer_now(ZTIMER_USEC) - start);
return (diff > timeout) ? 0: timeout - diff;
}
#ifdef SOCK_HAS_ASYNC
bool sock_dtls_get_event_session(sock_dtls_t *sock,
sock_dtls_session_t *session)
{
assert(sock);
assert(session);
if (sock->async_cb_session.size > 0) {
memcpy(&session->dtls_session, &sock->async_cb_session,
sizeof(sock->async_cb_session));
return true;
}
return false;
}
void _udp_cb(sock_udp_t *udp_sock, sock_async_flags_t flags, void *ctx)
{
sock_dtls_t *sock = ctx;
if (flags & SOCK_ASYNC_MSG_RECV) {
session_t remote;
sock_udp_ep_t remote_ep;
void *data = NULL;
void *data_ctx = NULL;
ssize_t res = sock_udp_recv_buf(udp_sock, &data, &data_ctx, 0,
&remote_ep);
if (res <= 0) {
DEBUG("sock_dtls: error receiving UDP packet: %d\n", (int)res);
return;
}
/* prevent overriding already set `buf_ctx` */
if (sock->buf_ctx != NULL) {
DEBUG("sock_dtls: unable to store buffer asynchronously\n");
_check_more_chunks(udp_sock, &data, &data_ctx, &remote_ep);
return;
}
_ep_to_session(&remote_ep, &remote);
sock->buf_ctx = data_ctx;
res = dtls_handle_message(sock->dtls_ctx, &remote,
data, res);
if (sock->buffer.data == NULL) {
_check_more_chunks(udp_sock, &data, &data_ctx, &remote_ep);
sock->buf_ctx = NULL;
}
}
if ((flags & SOCK_ASYNC_PATH_PROP) && sock->async_cb) {
/* just hand this event type up the stack */
sock->async_cb(sock, SOCK_ASYNC_PATH_PROP, sock->async_cb_arg);
}
}
void sock_dtls_set_cb(sock_dtls_t *sock, sock_dtls_cb_t cb, void *cb_arg)
{
sock->async_cb = cb;
sock->async_cb_arg = cb_arg;
if (IS_USED(MODULE_SOCK_ASYNC_EVENT)) {
sock_async_ctx_t *ctx = sock_dtls_get_async_ctx(sock);
if (ctx->queue) {
sock_udp_event_init(sock->udp_sock, ctx->queue, _udp_cb, sock);
return;
}
}
sock_udp_set_cb(sock->udp_sock, _udp_cb, sock);
}
#ifdef SOCK_HAS_ASYNC_CTX
sock_async_ctx_t *sock_dtls_get_async_ctx(sock_dtls_t *sock)
{
return &sock->async_ctx;
}
#endif /* SOCK_HAS_ASYNC_CTX */
#endif /* SOCK_HAS_ASYNC */
/** @} */