1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/atmega2560/periph/timer.c
2014-08-27 16:39:40 +02:00

673 lines
16 KiB
C

/*
* Copyright (C) 2014 Freie Universität Berlin, Hinnerk van Bruinehsen
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup driver_periph
* @{
*
* @file timer.c
* @brief Low-level timer driver implementation for the ATmega2560 CPU
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Hinnerk van Bruinehsen <h.v.bruinehsen@fu-berlin.de>
*
* @}
*/
#include <stdlib.h>
#include <stdio.h>
#include <avr/interrupt.h>
#include "board.h"
#include "cpu.h"
#include "periph/timer.h"
#include "periph_conf.h"
static inline int __set_timer(tim_t dev,
int channel,
unsigned int timeout,
unsigned int interval
);
#define IRQ_DISABLED 0x00
typedef struct {
void (*cb)(int);
volatile uint8_t ctr_a;
volatile uint8_t ctr_b;
volatile uint8_t ctr_c;
uint8_t limit;
uint16_t timeout_a;
uint16_t timeout_b;
uint16_t timeout_c;
} timer_conf_t;
/**
* @brief Timer state memory
*/
timer_conf_t config[TIMER_NUMOF];
/**
* @brief Setup the given timer
*
*/
int timer_init(tim_t dev, unsigned int ticks_per_us, void (*callback)(int))
{
/* reject impossible ticks_per_us values */
if ((ticks_per_us > 16) && (ticks_per_us == 0)) {
return -1;
}
config[dev].limit = 16 / ticks_per_us;
config[dev].ctr_a = 0x00;
config[dev].ctr_b = 0x00;
config[dev].ctr_c = 0x00;
/* select the timer and enable the timer specific peripheral clocks */
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
TIMER0_COUNTER = 0;
TIMER0_CONTROL_B |= TIMER0_FREQ_16MHZ;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
TIMER1_COUNTER = 0;
TIMER1_CONTROL_B |= TIMER1_FREQ_16MHZ;
break;
#endif
#if TIMER_2_EN
case TIMER_2:
TIMER2_COUNTER = 0;
TIMER2_CONTROL_B |= TIMER2_FREQ_16MHZ;
break;
#endif
case TIMER_UNDEFINED:
default:
return -1;
}
/* save callback */
config[dev].cb = callback;
return 0;
}
int timer_set(tim_t dev, int channel, unsigned int timeout)
{
return __set_timer(dev, channel, timer_read(dev) + timeout, timeout);
}
int timer_set_absolute(tim_t dev, int channel, unsigned int timeout)
{
return __set_timer(dev, channel, timeout, timeout);
}
int timer_clear(tim_t dev, int channel)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
switch (channel) {
case 0:
TIMER0_IRQ_FLAG_REG &= ~(1 << TIMER0_COMP_A_FLAG);
config[dev].timeout_a = IRQ_DISABLED;
break;
case 1:
TIMER0_IRQ_FLAG_REG &= ~(1 << TIMER0_COMP_B_FLAG);
config[dev].timeout_b = IRQ_DISABLED;
break;
case 2:
TIMER0_IRQ_FLAG_REG &= ~(1 << TIMER0_COMP_C_FLAG);
config[dev].timeout_c = IRQ_DISABLED;
break;
default:
return -1;
}
break;
#endif
#if TIMER_1_EN
case TIMER_1:
switch (channel) {
case 0:
TIMER1_IRQ_FLAG_REG &= ~(1 << TIMER1_COMP_A_FLAG);
config[dev].timeout_a = IRQ_DISABLED;
break;
case 1:
TIMER1_IRQ_FLAG_REG &= ~(1 << TIMER1_COMP_B_FLAG);
config[dev].timeout_b = IRQ_DISABLED;
break;
case 2:
TIMER1_IRQ_FLAG_REG &= ~(1 << TIMER1_COMP_C_FLAG);
config[dev].timeout_c = IRQ_DISABLED;
break;
default:
return -1;
break;
}
break;
#endif
#if TIMER_2_EN
case TIMER_2:
switch (channel) {
case 0:
TIMER2_IRQ_FLAG_REG &= ~(1 << TIMER2_COMP_A_FLAG);
config[dev].timeout_a = IRQ_DISABLED;
break;
case 1:
TIMER2_IRQ_FLAG_REG &= ~(1 << TIMER2_COMP_B_FLAG);
config[dev].timeout_b = IRQ_DISABLED;
break;
case 2:
TIMER2_IRQ_FLAG_REG &= ~(1 << TIMER2_COMP_C_FLAG);
config[dev].timeout_c = IRQ_DISABLED;
break;
default:
return -1;
break;
}
break;
#endif
case TIMER_UNDEFINED:
default:
return -1;
}
timer_irq_disable(dev);
return 1;
}
unsigned int timer_read(tim_t dev)
{
uint16_t value;
/*
* Disabling interrupts globally because read from 16 Bit register can
* otherwise be messed up
*/
disableIRQ();
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
value = TIMER0_COUNTER;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
value = TIMER1_COUNTER;
break;
#endif
#if TIMER_2_EN
case TIMER_2:
value = TIMER2_COUNTER;
break;
#endif
case TIMER_UNDEFINED:
default:
value = 0;
enableIRQ();
}
enableIRQ();
return value;
}
void timer_stop(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
TIMER0_CONTROL_B = TIMER0_FREQ_DISABLE;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
TIMER1_CONTROL_B = TIMER1_FREQ_DISABLE;
break;
#endif
#if TIMER_2_EN
case TIMER_2:
TIMER2_CONTROL_B = TIMER2_FREQ_DISABLE;
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
void timer_start(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
TIMER0_CONTROL_B |= TIMER0_FREQ_16MHZ;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
TIMER1_CONTROL_B |= TIMER1_FREQ_16MHZ;
break;
#endif
#if TIMER_2_EN
case TIMER_2:
TIMER1_CONTROL_B |= TIMER1_FREQ_16MHZ;
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
void timer_irq_enable(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
if (config[dev].timeout_a != IRQ_DISABLED) {
TIMER0_IRQ_MASK_REG |= (1 << TIMER0_COMP_A_EN);
}
if (config[dev].timeout_b != IRQ_DISABLED) {
TIMER0_IRQ_MASK_REG |= (1 << TIMER0_COMP_B_EN);
}
if (config[dev].timeout_c != IRQ_DISABLED) {
TIMER0_IRQ_MASK_REG |= (1 << TIMER0_COMP_C_EN);
}
break;
#endif
#if TIMER_1_EN
case TIMER_1:
if (config[dev].timeout_a != IRQ_DISABLED) {
TIMER1_IRQ_MASK_REG |= (1 << TIMER1_COMP_A_EN);
}
if (config[dev].timeout_b != IRQ_DISABLED) {
TIMER1_IRQ_MASK_REG |= (1 << TIMER1_COMP_B_EN);
}
if (config[dev].timeout_c != IRQ_DISABLED) {
TIMER1_IRQ_MASK_REG |= (1 << TIMER1_COMP_C_EN);
}
break;
#endif
#if TIMER_2_EN
case TIMER_2:
if (config[dev].timeout_a != IRQ_DISABLED) {
TIMER2_IRQ_MASK_REG |= (1 << TIMER2_COMP_A_EN);
}
if (config[dev].timeout_b != IRQ_DISABLED) {
TIMER2_IRQ_MASK_REG |= (1 << TIMER2_COMP_B_EN);
}
if (config[dev].timeout_c != IRQ_DISABLED) {
TIMER2_IRQ_MASK_REG |= (1 << TIMER2_COMP_C_EN);
}
break;
#endif
case TIMER_UNDEFINED:
break;
}
enableIRQ();
}
void timer_irq_disable(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
if (config[dev].timeout_a == IRQ_DISABLED) {
TIMER0_IRQ_MASK_REG &= ~(1 << TIMER0_COMP_A_EN);
}
if (config[dev].timeout_b == IRQ_DISABLED) {
TIMER0_IRQ_MASK_REG &= ~(1 << TIMER0_COMP_B_EN);
}
if (config[dev].timeout_c == IRQ_DISABLED) {
TIMER0_IRQ_MASK_REG &= ~(1 << TIMER0_COMP_C_EN);
}
break;
#endif
#if TIMER_1_EN
case TIMER_1:
if (config[dev].timeout_a == IRQ_DISABLED) {
TIMER1_IRQ_MASK_REG &= ~(1 << TIMER1_COMP_A_EN);
}
if (config[dev].timeout_b == IRQ_DISABLED) {
TIMER1_IRQ_MASK_REG &= ~(1 << TIMER1_COMP_B_EN);
}
if (config[dev].timeout_c == IRQ_DISABLED) {
TIMER1_IRQ_MASK_REG &= ~(1 << TIMER1_COMP_C_EN);
}
break;
#endif
#if TIMER_2_EN
case TIMER_2:
if (config[dev].timeout_a == IRQ_DISABLED) {
TIMER2_IRQ_MASK_REG &= ~(1 << TIMER2_COMP_A_EN);
}
if (config[dev].timeout_b == IRQ_DISABLED) {
TIMER2_IRQ_MASK_REG &= ~(1 << TIMER2_COMP_B_EN);
}
if (config[dev].timeout_c == IRQ_DISABLED) {
TIMER2_IRQ_MASK_REG &= ~(1 << TIMER2_COMP_C_EN);
}
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
void timer_reset(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
TIMER0_COUNTER = 0;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
TIMER1_COUNTER = 0;
break;
#endif
#if TIMER_2_EN
case TIMER_2:
TIMER2_COUNTER = 0;
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
inline int __set_timer(tim_t dev, int channel, unsigned int timeout, unsigned int interval)
{
/*
* Disabling interrupts globally because write to 16 Bit register can
* otherwise be messed up
*/
disableIRQ();
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
switch (channel) {
case 0:
TIMER0_COMP_A = (uint16_t) timeout * config[dev].limit;
config[dev].timeout_a = interval;
break;
case 1:
TIMER0_COMP_B = (uint16_t) timeout * config[dev].limit;
config[dev].timeout_b = interval;
break;
case 2:
TIMER0_COMP_C = (uint16_t) timeout * config[dev].limit;
config[dev].timeout_c = interval;
break;
default:
enableIRQ();
return -1;
}
break;
#endif
#if TIMER_1_EN
case TIMER_1:
switch (channel) {
case 0:
TIMER1_COMP_A = (uint16_t) timeout * config[dev].limit;
config[dev].timeout_a = interval;
break;
case 1:
TIMER1_COMP_B = (uint16_t) timeout * config[dev].limit;
config[dev].timeout_b = interval;
break;
case 2:
TIMER1_COMP_C = (uint16_t) timeout * config[dev].limit;
config[dev].timeout_c = interval;
break;
default:
enableIRQ();
return -1;
}
break;
#endif
#if TIMER_2_EN
case TIMER_2:
switch (channel) {
case 0:
TIMER2_COMP_A = (uint16_t) timeout * config[dev].limit;
config[dev].timeout_a = interval;
break;
case 1:
TIMER2_COMP_B = (uint16_t) timeout * config[dev].limit;
config[dev].timeout_b = interval;
break;
case 2:
TIMER2_COMP_C = (uint16_t) timeout * config[dev].limit;
config[dev].timeout_c = interval;
break;
default:
enableIRQ();
return -1;
}
break;
#endif
case TIMER_UNDEFINED:
default:
enableIRQ();
return -1;
}
/* enable interrupts for given timer */
timer_irq_enable(dev);
enableIRQ();
return 1;
}
#if TIMER_0_EN
ISR(TIMER0_COMPA_ISR, ISR_BLOCK)
{
config[TIMER_0].ctr_a++;
if (config[TIMER_0].ctr_a >= config[TIMER_0].limit) {
config[TIMER_0].limit = 0;
config[TIMER_0].cb(0);
TIMER0_COMP_A = TIMER0_COMP_A + config[TIMER_0].timeout_a * config[TIMER_0].limit;
}
}
ISR(TIMER0_COMPB_ISR, ISR_BLOCK)
{
config[TIMER_0].ctr_b++;
if (config[TIMER_0].ctr_b >= config[TIMER_0].limit) {
config[TIMER_0].limit = 0;
config[TIMER_0].cb(1);
TIMER0_COMP_B = TIMER0_COMP_B + config[TIMER_0].timeout_b * config[TIMER_0].limit;
}
}
ISR(TIMER0_COMPC_ISR, ISR_BLOCK)
{
config[TIMER_0].ctr_c++;
if (config[TIMER_0].ctr_c >= config[TIMER_0].limit) {
config[TIMER_0].limit = 0;
config[TIMER_0].cb(2);
TIMER0_COMP_C = TIMER0_COMP_C + config[TIMER_0].timeout_c * config[TIMER_0].limit;
}
}
#endif /* TIMER_0_EN */
#if TIMER_1_EN
ISR(TIMER1_COMPA_ISR, ISR_BLOCK)
{
config[TIMER_1].ctr_a++;
if (config[TIMER_1].ctr_a >= config[TIMER_1].limit) {
config[TIMER_1].limit = 0;
config[TIMER_1].cb(0);
TIMER1_COMP_A = TIMER1_COMP_A + config[TIMER_1].timeout_a * config[TIMER_1].limit;
}
if (sched_context_switch_request) {
thread_yield();
}
}
ISR(TIMER1_COMPB_ISR, ISR_BLOCK)
{
config[TIMER_1].ctr_b++;
if (config[TIMER_1].ctr_b >= config[TIMER_1].limit) {
config[TIMER_1].limit = 0;
config[TIMER_1].cb(1);
TIMER1_COMP_B = TIMER1_COMP_B + config[TIMER_1].timeout_b * config[TIMER_1].limit;
}
if (sched_context_switch_request) {
thread_yield();
}
}
ISR(TIMER1_COMPC_ISR, ISR_BLOCK)
{
config[TIMER_1].ctr_c++;
if (config[TIMER_1].ctr_c >= config[TIMER_1].limit) {
config[TIMER_1].limit = 0;
config[TIMER_1].cb(2);
TIMER1_COMP_C = TIMER1_COMP_C + config[TIMER_1].timeout_c * config[TIMER_1].limit;
}
if (sched_context_switch_request) {
thread_yield();
}
}
#endif /* TIMER_1_EN */
#if TIMER_2_EN
ISR(TIMER2_COMPA_ISR, ISR_BLOCK)
{
config[TIMER_2].ctr_a++;
if (config[TIMER_2].ctr_a >= config[TIMER_2].limit) {
config[TIMER_2].limit = 0;
config[TIMER_2].cb(0);
TIMER2_COMP_A = TIMER2_COMP_A + config[TIMER_2].timeout_a * config[TIMER_2].limit;
}
if (sched_context_switch_request) {
thread_yield();
}
}
ISR(TIMER2_COMPB_ISR, ISR_BLOCK)
{
config[TIMER_2].ctr_b++;
if (config[TIMER_2].ctr_b >= config[TIMER_2].limit) {
config[TIMER_2].limit = 0;
config[TIMER_2].cb(1);
TIMER2_COMP_B = TIMER2_COMP_B + config[TIMER_2].timeout_b * config[TIMER_2].limit;
}
if (sched_context_switch_request) {
thread_yield();
}
}
ISR(TIMER2_COMPC_ISR, ISR_BLOCK)
{
config[TIMER_2].ctr_c++;
if (config[TIMER_2].ctr_c >= config[TIMER_2].limit) {
config[TIMER_2].limit = 0;
config[TIMER_2].cb(2);
TIMER2_COMP_C = TIMER2_COMP_C + config[TIMER_2].timeout_c * config[TIMER_2].limit;
}
if (sched_context_switch_request) {
thread_yield();
}
}
#endif /* TIMER_2_EN */