1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-15 19:32:46 +01:00
RIOT/cpu/cc2538/periph/uart.c
2020-03-10 14:22:34 +01:00

262 lines
7.4 KiB
C

/*
* Copyright (C) 2014 Loci Controls Inc.
* 2017 HAW Hamburg
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_cc2538
* @ingroup drivers_periph_uart
* @{
*
* @file
* @brief Low-level UART driver implementation
*
* @author Ian Martin <ian@locicontrols.com>
* @author Sebastian Meiling <s@mlng.net>
* @}
*/
#include <stddef.h>
#include "board.h"
#include "cpu.h"
#include "periph/uart.h"
#include "periph_conf.h"
/* Pin functions and interrupt definitions for the two UARTs */
#define UART_RXD(X) (cc2538_ioc_pin_t)(2 * (X))
#define UART_TXD(X) (cc2538_ioc_sel_t)(2 * (X))
#define UART_IRQ(X) (IRQn_Type)(5 + (X))
/* Bit field definitions for the UART Line Control Register: */
#define FEN (1 << 4) /**< Enable FIFOs */
/* Bit masks for the UART Masked Interrupt Status (MIS) Register: */
#define OEMIS (1 << 10) /**< UART overrun errors */
#define BEMIS (1 << 9) /**< UART break error */
#define FEMIS (1 << 7) /**< UART framing error */
#define RTMIS (1 << 6) /**< UART RX time-out */
#define RXMIS (1 << 4) /**< UART RX masked interrupt */
#define UART_CTL_HSE_VALUE (0)
#define DIVFRAC_NUM_BITS (6)
#define DIVFRAC_MASK ((1 << DIVFRAC_NUM_BITS) - 1)
enum {
FIFO_LEVEL_1_8TH = 0,
FIFO_LEVEL_2_8TH = 1,
FIFO_LEVEL_4_8TH = 2,
FIFO_LEVEL_6_8TH = 3,
FIFO_LEVEL_7_8TH = 4,
};
/* Valid word lengths for the LCRHbits.WLEN bit field: */
enum {
WLEN_5_BITS = 0,
WLEN_6_BITS = 1,
WLEN_7_BITS = 2,
WLEN_8_BITS = 3,
};
/**
* @brief Allocate memory to store the callback functions.
*/
static uart_isr_ctx_t uart_ctx[UART_NUMOF];
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
{
assert(uart < UART_NUMOF);
cc2538_uart_t *u = uart_config[uart].dev;
/* uart_num refers to the CPU UART peripheral number, which may be
* different from the value of the uart variable, depending on the board
* configuration.
*/
unsigned int uart_num = ((uintptr_t)u - (uintptr_t)UART0_BASEADDR) / 0x1000;
/* Configure the Rx and Tx pins. If no callback function is defined,
* the UART should be initialised in Tx only mode.
*/
if (rx_cb) {
gpio_init_af(uart_config[uart].rx_pin, UART_RXD(uart_num), GPIO_IN);
}
gpio_init_af(uart_config[uart].tx_pin, UART_TXD(uart_num), GPIO_OUT);
/* Enable clock for the UART while Running, in Sleep and Deep Sleep */
SYS_CTRL_RCGCUART |= (1 << uart_num);
SYS_CTRL_SCGCUART |= (1 << uart_num);
SYS_CTRL_DCGCUART |= (1 << uart_num);
/* Make sure the UART is disabled before trying to configure it */
u->cc2538_uart_ctl.CTL = 0;
/* Run on SYS_DIV */
u->CC = 0;
/* On the CC2538, hardware flow control is supported only on UART1 */
#ifdef MODULE_PERIPH_UART_HW_FC
if (uart_config[uart].rts_pin != GPIO_UNDEF) {
assert(u != UART0_BASEADDR);
gpio_init_af(uart_config[uart].rts_pin, UART1_RTS, GPIO_OUT);
u->cc2538_uart_ctl.CTLbits.RTSEN = 1;
}
if (uart_config[uart].cts_pin != GPIO_UNDEF) {
assert(u != UART0_BASEADDR);
gpio_init_af(uart_config[uart].cts_pin, UART1_CTS, GPIO_IN);
u->cc2538_uart_ctl.CTLbits.CTSEN = 1;
}
#endif
/*
* UART Interrupt Setup:
* Acknowledge Overrun, Break and Framing Errors
* Acknowledge RX Timeout and Rx
*/
u->cc2538_uart_im.IM = (OEMIS | BEMIS | FEMIS | RTMIS | RXMIS);
/* Set FIFO interrupt levels and enable Rx and/or Tx: */
if (rx_cb) {
u->cc2538_uart_ifls.IFLSbits.RXIFLSEL = FIFO_LEVEL_4_8TH; /**< MCU default */
u->cc2538_uart_ctl.CTLbits.RXE = 1;
}
u->cc2538_uart_ifls.IFLSbits.TXIFLSEL = FIFO_LEVEL_4_8TH; /**< MCU default */
u->cc2538_uart_ctl.CTLbits.TXE = 1;
/* Enable high speed (UART is clocked using system clock divided by 8
* rather than 16)
*/
u->cc2538_uart_ctl.CTLbits.HSE = UART_CTL_HSE_VALUE;
/* Set the divisor for the baud rate generator */
uint32_t divisor = sys_clock_freq();
divisor <<= UART_CTL_HSE_VALUE + 2;
divisor += baudrate / 2; /**< Avoid a rounding error */
divisor /= baudrate;
u->IBRD = divisor >> DIVFRAC_NUM_BITS;
u->FBRD = divisor & DIVFRAC_MASK;
/* Configure line control for 8-bit, no parity, 1 stop bit and enable */
u->cc2538_uart_lcrh.LCRH = (WLEN_8_BITS << 5) | FEN;
/* register callbacks */
if (rx_cb) {
uart_ctx[uart].rx_cb = rx_cb;
uart_ctx[uart].arg = arg;
}
/* enable UART interrupt */
NVIC_EnableIRQ(UART_IRQ(uart_num));
/* UART Enable */
u->cc2538_uart_ctl.CTLbits.UARTEN = 1;
return UART_OK;
}
#ifdef MODULE_PERIPH_UART_MODECFG
int uart_mode(uart_t uart, uart_data_bits_t data_bits, uart_parity_t parity,
uart_stop_bits_t stop_bits)
{
assert(uart < UART_NUMOF);
assert(data_bits == UART_DATA_BITS_5 ||
data_bits == UART_DATA_BITS_6 ||
data_bits == UART_DATA_BITS_7 ||
data_bits == UART_DATA_BITS_8);
assert(parity == UART_PARITY_NONE ||
parity == UART_PARITY_EVEN ||
parity == UART_PARITY_ODD ||
parity == UART_PARITY_MARK ||
parity == UART_PARITY_SPACE);
assert(stop_bits == UART_STOP_BITS_1 ||
stop_bits == UART_STOP_BITS_2);
cc2538_reg_t *lcrh = &(uart_config[uart].dev->cc2538_uart_lcrh.LCRH);
uint32_t tmp = *lcrh;
tmp &= ~(UART_LCRH_WLEN_M | UART_LCRH_FEN_M | UART_LCRH_STP2_M |
UART_LCRH_PEN | UART_LCRH_EPS | UART_LCRH_SPS);
*lcrh = tmp | data_bits | parity | stop_bits;
return 0;
}
#endif
void uart_write(uart_t uart, const uint8_t *data, size_t len)
{
assert(uart < UART_NUMOF);
cc2538_uart_t *u = uart_config[uart].dev;
/* Block if the TX FIFO is full */
for (size_t i = 0; i < len; i++) {
while (u->cc2538_uart_fr.FRbits.TXFF) {}
u->DR = data[i];
}
}
void uart_poweron(uart_t uart)
{
assert(uart < UART_NUMOF);
/* Turn the clock on first, in case it has been turned off */
SYS_CTRL->cc2538_sys_ctrl_unnamed1.RCGCUART |= (1 << uart);
uart_config[uart].dev->cc2538_uart_ctl.CTLbits.UARTEN = 1;
}
void uart_poweroff(uart_t uart)
{
assert(uart < UART_NUMOF);
/* Wait for the TX FIFO to clear */
while (uart_config[uart].dev->cc2538_uart_fr.FRbits.TXFF) {}
uart_config[uart].dev->cc2538_uart_ctl.CTLbits.UARTEN = 0;
/* Turn the clock off afterwards to save power */
SYS_CTRL->cc2538_sys_ctrl_unnamed1.RCGCUART &= ~(1 << uart);
}
static inline void irq_handler(uart_t uart)
{
assert(uart < UART_NUMOF);
cc2538_uart_t *u = uart_config[uart].dev;
/* Latch the Masked Interrupt Status and clear any active flags */
uint16_t mis = uart_config[uart].dev->cc2538_uart_mis.MIS;
uart_config[uart].dev->ICR = mis;
while (uart_config[uart].dev->cc2538_uart_fr.FRbits.RXFE == 0) {
uart_ctx[uart].rx_cb(uart_ctx[uart].arg, uart_config[uart].dev->DR);
}
if (mis & (OEMIS | BEMIS | FEMIS)) {
/* Clear error status */
u->cc2538_uart_dr.ECR = 0xFF;
}
cortexm_isr_end();
}
#ifdef UART_0_ISR
void UART_0_ISR(void)
{
irq_handler((uart_t)0);
}
#endif
#ifdef UART_1_ISR
void UART_1_ISR(void)
{
irq_handler((uart_t)1);
}
#endif