mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2024-12-29 04:50:03 +01:00
500 lines
14 KiB
C
500 lines
14 KiB
C
/*
|
|
* Copyright (C) 2014-2017 Freie Universität Berlin
|
|
* 2015 Jan Wagner <mail@jwagner.eu>
|
|
* 2018 Inria
|
|
* 2020 Philipp-Alexander Blum <philipp-blum@jakiku.de>
|
|
*
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU Lesser
|
|
* General Public License v2.1. See the file LICENSE in the top level
|
|
* directory for more details.
|
|
*/
|
|
|
|
/**
|
|
* @ingroup cpu_nrf5x_common
|
|
* @ingroup drivers_periph_uart
|
|
* @{
|
|
*
|
|
* @file
|
|
* @brief Implementation of the peripheral UART interface
|
|
*
|
|
* @author Christian Kühling <kuehling@zedat.fu-berlin.de>
|
|
* @author Timo Ziegler <timo.ziegler@fu-berlin.de>
|
|
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
|
|
* @author Jan Wagner <mail@jwagner.eu>
|
|
* @author Alexandre Abadie <alexandre.abadie@inria.fr>
|
|
* @author Philipp-Alexander Blum <philipp-blum@jakiku.de>
|
|
*
|
|
* @}
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "cpu.h"
|
|
#include "periph/uart.h"
|
|
#include "periph/gpio.h"
|
|
|
|
#if !defined(CPU_MODEL_NRF52832XXAA) && !defined(CPU_FAM_NRF51)
|
|
#define UART_INVALID (uart >= UART_NUMOF)
|
|
#define REG_BAUDRATE dev(uart)->BAUDRATE
|
|
#define REG_CONFIG dev(uart)->CONFIG
|
|
#define PSEL_RXD dev(uart)->PSEL.RXD
|
|
#define PSEL_TXD dev(uart)->PSEL.TXD
|
|
#define UART_IRQN uart_config[uart].irqn
|
|
#define UART_PIN_RX uart_config[uart].rx_pin
|
|
#define UART_PIN_TX uart_config[uart].tx_pin
|
|
#ifdef MODULE_PERIPH_UART_HW_FC
|
|
#define UART_PIN_RTS uart_config[uart].rts_pin
|
|
#define UART_PIN_CTS uart_config[uart].cts_pin
|
|
#endif
|
|
#define ISR_CTX isr_ctx[uart]
|
|
#define RAM_MASK (0x20000000)
|
|
|
|
/**
|
|
* @brief Chunk size used for transferring data from ROM [in bytes]
|
|
*/
|
|
#ifndef NRF_UARTE_CHUNK_SIZE
|
|
#define NRF_UARTE_CHUNK_SIZE (32U)
|
|
#endif
|
|
|
|
/**
|
|
* @brief Allocate memory for the interrupt context
|
|
*/
|
|
static uart_isr_ctx_t isr_ctx[UART_NUMOF];
|
|
static uint8_t rx_buf[UART_NUMOF];
|
|
|
|
#ifdef MODULE_PERIPH_UART_NONBLOCKING
|
|
|
|
#include "tsrb.h"
|
|
/**
|
|
* @brief Allocate for tx ring buffers
|
|
*/
|
|
static uint8_t tx_buf[UART_NUMOF];
|
|
static tsrb_t uart_tx_rb[UART_NUMOF];
|
|
static uint8_t uart_tx_rb_buf[UART_NUMOF][UART_TXBUF_SIZE];
|
|
#endif
|
|
|
|
static inline NRF_UARTE_Type *dev(uart_t uart)
|
|
{
|
|
return uart_config[uart].dev;
|
|
}
|
|
|
|
#else /* nrf51 and nrf52832 etc */
|
|
|
|
#define UART_INVALID (uart != 0)
|
|
#define REG_BAUDRATE NRF_UART0->BAUDRATE
|
|
#define REG_CONFIG NRF_UART0->CONFIG
|
|
#define PSEL_RXD NRF_UART0->PSELRXD
|
|
#define PSEL_TXD NRF_UART0->PSELTXD
|
|
#define UART_0_ISR isr_uart0
|
|
#define ISR_CTX isr_ctx
|
|
|
|
/**
|
|
* @brief Allocate memory for the interrupt context
|
|
*/
|
|
static uart_isr_ctx_t isr_ctx;
|
|
|
|
#endif /* !CPU_MODEL_NRF52832XXAA && !CPU_FAM_NRF51 */
|
|
|
|
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
|
|
{
|
|
if (UART_INVALID) {
|
|
return UART_NODEV;
|
|
}
|
|
|
|
/* remember callback addresses and argument */
|
|
ISR_CTX.rx_cb = rx_cb;
|
|
ISR_CTX.arg = arg;
|
|
|
|
#ifdef CPU_FAM_NRF51
|
|
/* power on the UART device */
|
|
NRF_UART0->POWER = 1;
|
|
#endif
|
|
|
|
/* reset configuration registers */
|
|
REG_CONFIG = 0;
|
|
|
|
/* configure RX pin */
|
|
if (rx_cb) {
|
|
gpio_init(UART_PIN_RX, GPIO_IN);
|
|
PSEL_RXD = UART_PIN_RX;
|
|
}
|
|
|
|
/* configure TX pin */
|
|
gpio_init(UART_PIN_TX, GPIO_OUT);
|
|
PSEL_TXD = UART_PIN_TX;
|
|
|
|
#if !defined(CPU_MODEL_NRF52832XXAA) && !defined(CPU_FAM_NRF51)
|
|
/* enable HW-flow control if defined */
|
|
#ifdef MODULE_PERIPH_UART_HW_FC
|
|
/* set pin mode for RTS and CTS pins */
|
|
if (UART_PIN_RTS != GPIO_UNDEF && UART_PIN_CTS != GPIO_UNDEF) {
|
|
gpio_init(UART_PIN_RTS, GPIO_OUT);
|
|
gpio_init(UART_PIN_CTS, GPIO_IN);
|
|
/* configure RTS and CTS pins to use */
|
|
dev(uart)->PSEL.RTS = UART_PIN_RTS;
|
|
dev(uart)->PSEL.CTS = UART_PIN_CTS;
|
|
REG_CONFIG |= UART_CONFIG_HWFC_Msk; /* enable HW flow control */
|
|
}
|
|
#else
|
|
dev(uart)->PSEL.RTS = 0xffffffff; /* pin disconnected */
|
|
dev(uart)->PSEL.CTS = 0xffffffff; /* pin disconnected */
|
|
#endif
|
|
#else
|
|
#ifdef MODULE_PERIPH_UART_HW_FC
|
|
/* set pin mode for RTS and CTS pins */
|
|
if (UART_PIN_RTS != GPIO_UNDEF && UART_PIN_CTS != GPIO_UNDEF) {
|
|
gpio_init(UART_PIN_RTS, GPIO_OUT);
|
|
gpio_init(UART_PIN_CTS, GPIO_IN);
|
|
/* configure RTS and CTS pins to use */
|
|
NRF_UART0->PSELRTS = UART_PIN_RTS;
|
|
NRF_UART0->PSELCTS = UART_PIN_CTS;
|
|
REG_CONFIG |= UART_CONFIG_HWFC_Msk; /* enable HW flow control */
|
|
}
|
|
#else
|
|
NRF_UART0->PSELRTS = 0xffffffff; /* pin disconnected */
|
|
NRF_UART0->PSELCTS = 0xffffffff; /* pin disconnected */
|
|
#endif /* MODULE_PERIPH_UART_HW_FC */
|
|
#endif
|
|
|
|
/* select baudrate */
|
|
switch (baudrate) {
|
|
case 1200:
|
|
REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud1200;
|
|
break;
|
|
case 2400:
|
|
REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud2400;
|
|
break;
|
|
case 4800:
|
|
REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud4800;
|
|
break;
|
|
case 9600:
|
|
REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud9600;
|
|
break;
|
|
case 14400:
|
|
REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud14400;
|
|
break;
|
|
case 19200:
|
|
REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud19200;
|
|
break;
|
|
case 28800:
|
|
REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud28800;
|
|
break;
|
|
case 38400:
|
|
REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud38400;
|
|
break;
|
|
case 57600:
|
|
REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud57600;
|
|
break;
|
|
case 76800:
|
|
REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud76800;
|
|
break;
|
|
case 115200:
|
|
REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud115200;
|
|
break;
|
|
case 230400:
|
|
REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud230400;
|
|
break;
|
|
case 250000:
|
|
REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud250000;
|
|
break;
|
|
case 460800:
|
|
REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud460800;
|
|
break;
|
|
case 921600:
|
|
REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud921600;
|
|
break;
|
|
case 1000000:
|
|
REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud1M;
|
|
break;
|
|
default:
|
|
return UART_NOBAUD;
|
|
}
|
|
|
|
/* enable the UART device */
|
|
#if !defined(CPU_MODEL_NRF52832XXAA) && !defined(CPU_FAM_NRF51)
|
|
dev(uart)->ENABLE = UARTE_ENABLE_ENABLE_Enabled;
|
|
#else
|
|
NRF_UART0->ENABLE = UART_ENABLE_ENABLE_Enabled;
|
|
NRF_UART0->TASKS_STARTTX = 1;
|
|
#endif
|
|
|
|
#ifdef MODULE_PERIPH_UART_NONBLOCKING
|
|
/* set up the TX buffer */
|
|
tsrb_init(&uart_tx_rb[uart], uart_tx_rb_buf[uart], UART_TXBUF_SIZE);
|
|
#endif
|
|
|
|
if (rx_cb) {
|
|
#if !defined(CPU_MODEL_NRF52832XXAA) && !defined(CPU_FAM_NRF51)
|
|
dev(uart)->RXD.MAXCNT = 1;
|
|
dev(uart)->RXD.PTR = (uint32_t)&rx_buf[uart];
|
|
dev(uart)->INTENSET = UARTE_INTENSET_ENDRX_Msk;
|
|
dev(uart)->SHORTS |= UARTE_SHORTS_ENDRX_STARTRX_Msk;
|
|
dev(uart)->TASKS_STARTRX = 1;
|
|
#else
|
|
NRF_UART0->INTENSET = UART_INTENSET_RXDRDY_Msk;
|
|
NRF_UART0->TASKS_STARTRX = 1;
|
|
#endif
|
|
}
|
|
|
|
if (rx_cb || IS_USED(MODULE_PERIPH_UART_NONBLOCKING)) {
|
|
NVIC_EnableIRQ(UART_IRQN);
|
|
}
|
|
return UART_OK;
|
|
}
|
|
|
|
/* nrf52840 || nrf52811 (using EasyDMA) */
|
|
#if !defined(CPU_MODEL_NRF52832XXAA) && !defined(CPU_FAM_NRF51)
|
|
static void _write_buf(uart_t uart, const uint8_t *data, size_t len)
|
|
{
|
|
dev(uart)->EVENTS_ENDTX = 0;
|
|
if (IS_USED(MODULE_PERIPH_UART_NONBLOCKING)) {
|
|
dev(uart)->INTENSET = UARTE_INTENSET_ENDTX_Msk;
|
|
}
|
|
/* set data to transfer to DMA TX pointer */
|
|
dev(uart)->TXD.PTR = (uint32_t)data;
|
|
dev(uart)->TXD.MAXCNT = len;
|
|
/* start transmission */
|
|
dev(uart)->TASKS_STARTTX = 1;
|
|
/* wait for the end of transmission */
|
|
if (!IS_USED(MODULE_PERIPH_UART_NONBLOCKING)) {
|
|
while (dev(uart)->EVENTS_ENDTX == 0) {}
|
|
}
|
|
}
|
|
|
|
void uart_write(uart_t uart, const uint8_t *data, size_t len)
|
|
{
|
|
assert(uart < UART_NUMOF);
|
|
#ifdef MODULE_PERIPH_UART_NONBLOCKING
|
|
for (size_t i = 0; i < len; i++) {
|
|
/* in IRQ or interrupts disabled */
|
|
if (irq_is_in() || __get_PRIMASK()) {
|
|
if (tsrb_full(&uart_tx_rb[uart])) {
|
|
/* wait for end of ongoing transmission */
|
|
if (dev(uart)->EVENTS_TXSTARTED) {
|
|
while (dev(uart)->EVENTS_ENDTX == 0) {}
|
|
dev(uart)->EVENTS_TXSTARTED = 0;
|
|
}
|
|
/* free one spot in buffer */
|
|
tx_buf[uart] = tsrb_get_one(&uart_tx_rb[uart]);
|
|
_write_buf(uart, &tx_buf[uart], 1);
|
|
}
|
|
tsrb_add_one(&uart_tx_rb[uart], data[i]);
|
|
}
|
|
else {
|
|
/* if no transmission is ongoing and ring buffer is full
|
|
free up a spot in the buffer by sending one byte */
|
|
if (!dev(uart)->EVENTS_TXSTARTED && tsrb_full(&uart_tx_rb[uart])) {
|
|
tx_buf[uart] = tsrb_get_one(&uart_tx_rb[uart]);
|
|
_write_buf(uart, &tx_buf[uart], 1);
|
|
}
|
|
while (tsrb_add_one(&uart_tx_rb[uart], data[i]) < 0) {}
|
|
}
|
|
}
|
|
/* if no transmission is ongoing bootstrap the transmission process
|
|
by setting a single byte to be written */
|
|
if (!dev(uart)->EVENTS_TXSTARTED) {
|
|
if (!tsrb_empty(&uart_tx_rb[uart])) {
|
|
tx_buf[uart] = tsrb_get_one(&uart_tx_rb[uart]);
|
|
_write_buf(uart, &tx_buf[uart], 1);
|
|
}
|
|
}
|
|
#else
|
|
/* EasyDMA can only transfer data from RAM (see ref. manual, sec. 6.34.1).
|
|
* So if the given `data` buffer resides in ROM, we need to copy it to RAM
|
|
* before being able to transfer it. To make sure the stack does not
|
|
* overflow, we do this chunk-wise. */
|
|
if (!((uint32_t)data & RAM_MASK)) {
|
|
size_t pos = 0;
|
|
while (pos < len) {
|
|
uint8_t tmp[NRF_UARTE_CHUNK_SIZE];
|
|
size_t off = len - pos;
|
|
off = (off > NRF_UARTE_CHUNK_SIZE) ? NRF_UARTE_CHUNK_SIZE : off;
|
|
memcpy(tmp, data + pos, off);
|
|
_write_buf(uart, tmp, off);
|
|
pos += off;
|
|
}
|
|
}
|
|
else {
|
|
_write_buf(uart, data, len);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void uart_poweron(uart_t uart)
|
|
{
|
|
assert(uart < UART_NUMOF);
|
|
|
|
if (isr_ctx[uart].rx_cb) {
|
|
dev(uart)->TASKS_STARTRX = 1;
|
|
}
|
|
}
|
|
|
|
void uart_poweroff(uart_t uart)
|
|
{
|
|
assert(uart < UART_NUMOF);
|
|
|
|
dev(uart)->TASKS_STOPRX = 1;
|
|
}
|
|
|
|
int uart_mode(uart_t uart, uart_data_bits_t data_bits, uart_parity_t parity,
|
|
uart_stop_bits_t stop_bits)
|
|
{
|
|
|
|
if (stop_bits != UART_STOP_BITS_1 && stop_bits != UART_STOP_BITS_2) {
|
|
return UART_NOMODE;
|
|
}
|
|
|
|
if (data_bits != UART_DATA_BITS_8) {
|
|
return UART_NOMODE;
|
|
}
|
|
|
|
if (parity != UART_PARITY_NONE && parity != UART_PARITY_EVEN) {
|
|
return UART_NOMODE;
|
|
}
|
|
|
|
if (stop_bits == UART_STOP_BITS_2) {
|
|
dev(uart)->CONFIG |= UARTE_CONFIG_STOP_Msk;
|
|
}
|
|
else {
|
|
dev(uart)->CONFIG &= ~UARTE_CONFIG_STOP_Msk;
|
|
}
|
|
|
|
if (parity == UART_PARITY_EVEN) {
|
|
dev(uart)->CONFIG |= UARTE_CONFIG_PARITY_Msk;
|
|
}
|
|
else {
|
|
dev(uart)->CONFIG &= ~UARTE_CONFIG_PARITY_Msk;
|
|
}
|
|
|
|
return UART_OK;
|
|
}
|
|
|
|
static inline void irq_handler(uart_t uart)
|
|
{
|
|
if (dev(uart)->EVENTS_ENDRX) {
|
|
dev(uart)->EVENTS_ENDRX = 0;
|
|
|
|
/* make sure we actually received new data */
|
|
if (dev(uart)->RXD.AMOUNT != 0) {
|
|
/* Process received byte */
|
|
isr_ctx[uart].rx_cb(isr_ctx[uart].arg, rx_buf[uart]);
|
|
}
|
|
}
|
|
|
|
#ifdef MODULE_PERIPH_UART_NONBLOCKING
|
|
if (dev(uart)->EVENTS_ENDTX) {
|
|
/* reset flags and idsable ISR on EVENTS_ENDTX */
|
|
dev(uart)->EVENTS_ENDTX = 0;
|
|
dev(uart)->EVENTS_TXSTARTED = 0;
|
|
dev(uart)->INTENCLR = UARTE_INTENSET_ENDTX_Msk;
|
|
if (!tsrb_empty(&uart_tx_rb[uart])) {
|
|
tx_buf[uart] = tsrb_get_one(&uart_tx_rb[uart]);
|
|
_write_buf(uart, &tx_buf[uart], 1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
cortexm_isr_end();
|
|
}
|
|
|
|
#else /* nrf51 and nrf52832 etc */
|
|
|
|
void uart_write(uart_t uart, const uint8_t *data, size_t len)
|
|
{
|
|
(void)uart;
|
|
|
|
for (size_t i = 0; i < len; i++) {
|
|
/* This section of the function is not thread safe:
|
|
- another thread may mess up with the uart at the same time.
|
|
In order to avoid an infinite loop in the interrupted thread,
|
|
the TXRDY flag must be cleared before writing the data to be
|
|
sent and not after. This way, the higher priority thread will
|
|
exit this function with the TXRDY flag set, then the interrupted
|
|
thread may have not transmitted his data but will still exit the
|
|
while loop.
|
|
*/
|
|
/* reset ready flag */
|
|
NRF_UART0->EVENTS_TXDRDY = 0;
|
|
/* write data into transmit register */
|
|
NRF_UART0->TXD = data[i];
|
|
/* wait for any transmission to be done */
|
|
while (NRF_UART0->EVENTS_TXDRDY == 0) {}
|
|
}
|
|
}
|
|
|
|
void uart_poweron(uart_t uart)
|
|
{
|
|
(void)uart;
|
|
|
|
NRF_UART0->TASKS_STARTTX = 1;
|
|
if (isr_ctx.rx_cb) {
|
|
NRF_UART0->TASKS_STARTRX = 1;
|
|
}
|
|
}
|
|
|
|
void uart_poweroff(uart_t uart)
|
|
{
|
|
(void)uart;
|
|
|
|
NRF_UART0->TASKS_SUSPEND;
|
|
}
|
|
|
|
int uart_mode(uart_t uart, uart_data_bits_t data_bits, uart_parity_t parity,
|
|
uart_stop_bits_t stop_bits)
|
|
{
|
|
(void)uart;
|
|
|
|
if (stop_bits != UART_STOP_BITS_1) {
|
|
return UART_NOMODE;
|
|
}
|
|
|
|
if (data_bits != UART_DATA_BITS_8) {
|
|
return UART_NOMODE;
|
|
}
|
|
|
|
if (parity != UART_PARITY_NONE && parity != UART_PARITY_EVEN) {
|
|
return UART_NOMODE;
|
|
}
|
|
|
|
if (parity == UART_PARITY_EVEN) {
|
|
NRF_UART0->CONFIG |= UART_CONFIG_PARITY_Msk;
|
|
}
|
|
else {
|
|
NRF_UART0->CONFIG &= ~UART_CONFIG_PARITY_Msk;
|
|
}
|
|
|
|
return UART_OK;
|
|
}
|
|
|
|
static inline void irq_handler(uart_t uart)
|
|
{
|
|
(void)uart;
|
|
|
|
if (NRF_UART0->EVENTS_RXDRDY == 1) {
|
|
NRF_UART0->EVENTS_RXDRDY = 0;
|
|
uint8_t byte = (uint8_t)(NRF_UART0->RXD & 0xff);
|
|
isr_ctx.rx_cb(isr_ctx.arg, byte);
|
|
}
|
|
|
|
cortexm_isr_end();
|
|
}
|
|
|
|
#endif /* !CPU_MODEL_NRF52832XXAA && !CPU_FAM_NRF51 */
|
|
|
|
#ifdef UART_0_ISR
|
|
void UART_0_ISR(void)
|
|
{
|
|
irq_handler(UART_DEV(0));
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_1_ISR
|
|
void UART_1_ISR(void)
|
|
{
|
|
irq_handler(UART_DEV(1));
|
|
}
|
|
#endif
|