1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/esp8266/periph/timer.c
2019-11-14 13:58:22 +01:00

569 lines
16 KiB
C

/*
* Copyright (C) 2019 Gunar Schorcht
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_esp8266
* @ingroup drivers_periph_timer
* @{
*
* @file
* @brief Low-level timer driver implementation using ESP8266 SDK
*
* @author Gunar Schorcht <gunar@schorcht.net>
* @}
*/
/* WARNING! enable debugging will have timing side effects and can lead
* to timer underflows, system crashes or system dead locks in worst case. */
#define ENABLE_DEBUG 0
#include "debug.h"
#include "log.h"
#include "xtimer.h"
#include "periph/timer.h"
#include "esp/common_macros.h"
#include "esp_common.h"
#include "irq_arch.h"
#include "rom/ets_sys.h"
#include "sdk/sdk.h"
#include "xtensa/hal.h"
#if !defined(MODULE_ESP_SW_TIMER)
/* hardware timer used */
#define HW_TIMER_NUMOF 1
#define HW_TIMER_CHANNELS 1
#define HW_TIMER_MASK 0xffffffff
#define HW_TIMER_DELTA_MAX 0x00ffffff /* in us */
#define HW_TIMER_DELTA_MIN 0x00000001 /* in us */
#define HW_TIMER_DELTA_MASK 0x00ffffff
#define HW_TIMER_DELTA_RSHIFT 24
#define HW_TIMER_CORRECTION 2 /* overhead in us */
#define HW_TIMER_CLOCK (APB_CLK_FREQ)
#define US_TO_HW_TIMER_TICKS(t) (t * system_get_cpu_freq())
#define HW_TIMER_TICKS_TO_US(t) (t / system_get_cpu_freq())
struct hw_channel_t
{
bool used; /* indicates whether the channel is used */
uint32_t start_time; /* physical time when the timer channel has been started */
uint32_t delta_time; /* timer delta value (delta = cycles * timer_max + remainder) */
uint32_t cycles; /* number of complete max timer cycles */
uint32_t remainder; /* remainder timer value */
};
struct hw_timer_t
{
bool initialized; /* indicates whether timer is already initialized */
bool started; /* indicates whether timer is already started */
timer_isr_ctx_t isr_ctx;
struct hw_channel_t channels[HW_TIMER_CHANNELS];
};
static struct hw_timer_t timers[HW_TIMER_NUMOF] = { };
static void __timer_channel_start (struct hw_timer_t* timer, struct hw_channel_t* channel);
static void __timer_channel_stop (struct hw_timer_t* timer, struct hw_channel_t* channel);
static uint32_t __hw_timer_ticks_max;
static uint32_t __hw_timer_ticks_min;
void IRAM hw_timer_handler(void* arg)
{
uint32_t dev = (uint32_t)arg >> 4;
uint32_t chn = (uint32_t)arg & 0xf;
if (dev >= HW_TIMER_NUMOF && chn >= HW_TIMER_CHANNELS) {
return;
}
irq_isr_enter();
DEBUG("%s arg=%p\n", __func__, arg);
struct hw_timer_t* timer = &timers[dev];
struct hw_channel_t* channel = &timer->channels[chn];
if (channel->cycles) {
channel->cycles--;
xthal_set_ccompare(0, __hw_timer_ticks_max + xthal_get_ccount());
}
else if (channel->remainder >= HW_TIMER_DELTA_MIN) {
xthal_set_ccompare (0, US_TO_HW_TIMER_TICKS(channel->remainder) + xthal_get_ccount());
channel->remainder = 0;
}
else {
channel->remainder = 0;
channel->used = false;
ets_isr_mask (BIT(ETS_CCOM_INUM));
xthal_set_ccompare (0, 0);
timer->isr_ctx.cb(timer->isr_ctx.arg, chn);
}
irq_isr_exit();
}
int timer_init (tim_t dev, unsigned long freq, timer_cb_t cb, void *arg)
{
DEBUG("%s dev=%u freq=%lu cb=%p arg=%p\n", __func__, dev, freq, cb, arg);
CHECK_PARAM_RET (dev < HW_TIMER_NUMOF, -1);
CHECK_PARAM_RET (freq == XTIMER_HZ_BASE, -1);
CHECK_PARAM_RET (cb != NULL, -1);
if (timers[dev].initialized) {
DEBUG("%s timer dev=%u is already initialized (used)\n", __func__, dev);
return -1;
}
timers[dev].initialized = true;
timers[dev].started = false;
timers[dev].isr_ctx.cb = cb;
timers[dev].isr_ctx.arg = arg;
ets_isr_attach (ETS_CCOM_INUM, hw_timer_handler, NULL);
for (int i = 0; i < HW_TIMER_CHANNELS; i++) {
timers[dev].channels[i].used = false;
timers[dev].channels[i].cycles = 0;
timers[dev].channels[i].remainder = 0;
}
timer_start(dev);
return 0;
}
int IRAM timer_set(tim_t dev, int chn, unsigned int delta)
{
DEBUG("%s dev=%u channel=%d delta=%u\n", __func__, dev, chn, delta);
CHECK_PARAM_RET (dev < HW_TIMER_NUMOF, -1);
CHECK_PARAM_RET (chn < HW_TIMER_CHANNELS, -1);
int state = irq_disable ();
struct hw_timer_t* timer = &timers[dev];
struct hw_channel_t* channel = &timer->channels[chn];
/* set delta time and channel used flag */
channel->delta_time = delta > HW_TIMER_CORRECTION ? delta - HW_TIMER_CORRECTION : 0;
channel->used = true;
/* start channel with new delta time */
__timer_channel_start (timer, channel);
irq_restore (state);
return 0;
}
int IRAM timer_set_absolute(tim_t dev, int chn, unsigned int value)
{
DEBUG("%s dev=%u channel=%d value=%u\n", __func__, dev, chn, value);
return timer_set (dev, chn, value - timer_read(dev));
}
int timer_clear(tim_t dev, int chn)
{
DEBUG("%s dev=%u channel=%d\n", __func__, dev, chn);
CHECK_PARAM_RET (dev < HW_TIMER_NUMOF, -1);
CHECK_PARAM_RET (chn < HW_TIMER_CHANNELS, -1);
int state = irq_disable ();
/* stop running timer channel */
__timer_channel_stop (&timers[dev], &timers[dev].channels[chn]);
irq_restore (state);
return 0;
}
unsigned int IRAM timer_read(tim_t dev)
{
(void)dev;
return phy_get_mactime ();
}
void IRAM timer_start(tim_t dev)
{
DEBUG("%s dev=%u @%u\n", __func__, dev, phy_get_mactime());
CHECK_PARAM (dev < HW_TIMER_NUMOF);
CHECK_PARAM (!timers[dev].started);
int state = irq_disable ();
__hw_timer_ticks_max = US_TO_HW_TIMER_TICKS(HW_TIMER_DELTA_MAX);
__hw_timer_ticks_min = US_TO_HW_TIMER_TICKS(HW_TIMER_DELTA_MIN);
struct hw_timer_t* timer = &timers[dev];
timer->started = true;
for (int i = 0; i < HW_TIMER_CHANNELS; i++) {
__timer_channel_start (timer, &timer->channels[i]);
}
irq_restore (state);
}
void IRAM timer_stop(tim_t dev)
{
DEBUG("%s dev=%u\n", __func__, dev);
CHECK_PARAM (dev < HW_TIMER_NUMOF);
int state = irq_disable ();
struct hw_timer_t* timer = &timers[dev];
timer->started = false;
for (int i = 0; i < HW_TIMER_CHANNELS; i++) {
__timer_channel_stop (timer, &timer->channels[i]);
}
irq_restore (state);
}
static void IRAM __timer_channel_start (struct hw_timer_t* timer, struct hw_channel_t* channel)
{
if (!timer->started || !channel->used) {
return;
}
/* save channel starting time */
channel->start_time = timer_read (0);
channel->cycles = channel->delta_time >> HW_TIMER_DELTA_RSHIFT;
channel->remainder = channel->delta_time & HW_TIMER_DELTA_MASK;
DEBUG("%s cycles=%u remainder=%u @%u\n",
__func__, channel->cycles, channel->remainder, phy_get_mactime());
/* start timer either with full cycles, remaining or minimum time */
if (channel->cycles) {
channel->cycles--;
xthal_set_ccompare(0, __hw_timer_ticks_max + xthal_get_ccount());
}
else if (channel->remainder >= HW_TIMER_DELTA_MIN) {
xthal_set_ccompare (0, US_TO_HW_TIMER_TICKS(channel->remainder) + xthal_get_ccount());
channel->remainder = 0;
}
else {
channel->remainder = 0;
xthal_set_ccompare(0, __hw_timer_ticks_min + xthal_get_ccount());
}
ets_isr_unmask (BIT(ETS_CCOM_INUM));
}
static void IRAM __timer_channel_stop (struct hw_timer_t* timer, struct hw_channel_t* channel)
{
if (!channel->used) {
return;
}
ets_isr_mask (BIT(ETS_CCOM_INUM));
/* compute elapsed time */
uint32_t elapsed_time = timer_read (0) - channel->start_time;
if (channel->delta_time > elapsed_time) {
/* compute new delta time if the timer has no been expired */
channel->delta_time -= elapsed_time;
}
else {
/* otherwise deactivate the channel */
channel->used = false;
}
}
void timer_print_config(void)
{
for (unsigned i = 0; i < HW_TIMER_NUMOF; i++) {
printf("\tTIMER_DEV(%u)\t%d channel(s)\n", i,
ARRAY_SIZE(timers[i].channels));
}
}
#else /* MODULE_ESP_SW_TIMER */
/* software timer based on os_timer_arm functions */
#define OS_TIMER_NUMOF 1
#define OS_TIMER_CHANNELS 10
#define OS_TIMER_MASK 0xffffffff
#define OS_TIMER_DELTA_MAX 0x0000ffff
#define OS_TIMER_DELTA_MIN 0x00000064
#define OS_TIMER_DELTA_MASK 0x0000ffff
#define OS_TIMER_DELTA_RSHIFT 16
#define OS_TIMER_CORRECTION 4
extern void os_timer_arm_us(os_timer_t *ptimer, uint32_t time, bool repeat_flag);
/* Since hardware timer FRC1 is needed to implement PWM, we have to map our */
/* timer using the exsting ETS timer with 1 us clock rate */
struct phy_channel_t
{
bool used; /* indicates whether the channel is used */
uint32_t start_time; /* physical time when the timer channel has been started */
uint32_t delta_time; /* timer delta value (delta = cycles * timer_max + remainder) */
uint32_t cycles; /* number of complete max timer cycles */
uint32_t remainder; /* remainder timer value */
os_timer_t os_timer; /* used system software timer */
};
struct phy_timer_t
{
bool initialized; /* indicates whether timer is already initialized */
bool started; /* indicates whether timer is already started */
timer_isr_ctx_t isr_ctx;
struct phy_channel_t channels[OS_TIMER_CHANNELS];
};
static struct phy_timer_t timers[OS_TIMER_NUMOF] = { };
static void __timer_channel_start (struct phy_timer_t* timer, struct phy_channel_t* channel);
static void __timer_channel_stop (struct phy_timer_t* timer, struct phy_channel_t* channel);
/* Since we use ETS software timers, it is not really an ISR. Therefore */
/* we don't need to run in interrupt context. */
void IRAM os_timer_handler (void* arg)
{
uint32_t dev = (uint32_t)arg >> 4;
uint32_t chn = (uint32_t)arg & 0xf;
if (dev >= OS_TIMER_NUMOF && chn >= OS_TIMER_CHANNELS) {
return;
}
irq_isr_enter ();
struct phy_timer_t* timer = &timers[dev];
struct phy_channel_t* channel = &timer->channels[chn];
if (channel->cycles) {
channel->cycles--;
os_timer_arm_us (&channel->os_timer, OS_TIMER_DELTA_MAX, false);
}
else if (channel->remainder >= OS_TIMER_DELTA_MIN) {
os_timer_arm_us (&channel->os_timer, channel->remainder, false);
channel->remainder = 0;
}
else {
channel->remainder = 0;
channel->used = false;
timer->isr_ctx.cb(timer->isr_ctx.arg, chn);
}
irq_isr_exit ();
}
int timer_init (tim_t dev, unsigned long freq, timer_cb_t cb, void *arg)
{
DEBUG("%s dev=%u freq=%lu cb=%p arg=%p\n", __func__, dev, freq, cb, arg);
CHECK_PARAM_RET (dev < OS_TIMER_NUMOF, -1);
CHECK_PARAM_RET (freq == XTIMER_HZ_BASE, -1);
CHECK_PARAM_RET (cb != NULL, -1);
if (timers[dev].initialized) {
DEBUG("%s timer dev=%u is already initialized (used)\n", __func__, dev);
return -1;
}
timers[dev].initialized = true;
timers[dev].started = false;
timers[dev].isr_ctx.cb = cb;
timers[dev].isr_ctx.arg = arg;
for (int i = 0; i < OS_TIMER_CHANNELS; i++) {
os_timer_setfn(&timers[dev].channels[i].os_timer,
os_timer_handler, (void*)((dev << 4) | i));
timers[dev].channels[i].used = false;
timers[dev].channels[i].cycles = 0;
timers[dev].channels[i].remainder = 0;
}
timer_start(dev);
return 0;
}
int IRAM timer_set(tim_t dev, int chn, unsigned int delta)
{
DEBUG("%s dev=%u channel=%d delta=%u\n", __func__, dev, chn, delta);
CHECK_PARAM_RET (dev < OS_TIMER_NUMOF, -1);
CHECK_PARAM_RET (chn < OS_TIMER_CHANNELS, -1);
int state = irq_disable ();
struct phy_timer_t* timer = &timers[dev];
struct phy_channel_t* channel = &timer->channels[chn];
/* set delta time and channel used flag */
channel->delta_time = delta > OS_TIMER_CORRECTION ? delta - OS_TIMER_CORRECTION : 0;
channel->used = true;
/* start channel with new delta time */
__timer_channel_start (timer, channel);
irq_restore (state);
return 0;
}
int IRAM timer_set_absolute(tim_t dev, int chn, unsigned int value)
{
DEBUG("%s dev=%u channel=%d value=%u\n", __func__, dev, chn, value);
return timer_set (dev, chn, value - timer_read(dev));
}
int timer_clear(tim_t dev, int chn)
{
DEBUG("%s dev=%u channel=%d\n", __func__, dev, chn);
CHECK_PARAM_RET (dev < OS_TIMER_NUMOF, -1);
CHECK_PARAM_RET (chn < OS_TIMER_CHANNELS, -1);
int state = irq_disable ();
/* stop running timer channel */
__timer_channel_stop (&timers[dev], &timers[dev].channels[chn]);
irq_restore (state);
return 0;
}
unsigned int IRAM timer_read(tim_t dev)
{
(void)dev;
return phy_get_mactime ();
}
void IRAM timer_start(tim_t dev)
{
DEBUG("%s dev=%u\n", __func__, dev);
CHECK_PARAM (dev < OS_TIMER_NUMOF);
CHECK_PARAM (!timers[dev].started);
int state = irq_disable ();
struct phy_timer_t* timer = &timers[dev];
timer->started = true;
for (int i = 0; i < OS_TIMER_CHANNELS; i++) {
__timer_channel_start (timer, &timer->channels[i]);
}
irq_restore (state);
}
void IRAM timer_stop(tim_t dev)
{
DEBUG("%s dev=%u\n", __func__, dev);
CHECK_PARAM (dev < OS_TIMER_NUMOF);
int state = irq_disable ();
struct phy_timer_t* timer = &timers[dev];
timer->started = false;
for (int i = 0; i < OS_TIMER_CHANNELS; i++) {
__timer_channel_stop (timer, &timer->channels[i]);
}
irq_restore (state);
}
static void IRAM __timer_channel_start (struct phy_timer_t* timer, struct phy_channel_t* channel)
{
if (!timer->started || !channel->used) {
return;
}
/* disarm old timer if already started */
os_timer_disarm (&channel->os_timer);
/* save channel starting time */
channel->start_time = timer_read (0);
channel->cycles = channel->delta_time >> OS_TIMER_DELTA_RSHIFT;
channel->remainder = channel->delta_time & OS_TIMER_DELTA_MASK;
DEBUG("%s cycles=%u remainder=%u @%u\n",
__func__, channel->cycles, channel->remainder, phy_get_mactime());
/* start timer either with full cycles, remainder or minimum time */
if (channel->cycles) {
channel->cycles--;
os_timer_arm_us (&channel->os_timer, OS_TIMER_DELTA_MAX, false);
}
else if (channel->remainder > OS_TIMER_DELTA_MIN) {
os_timer_arm_us (&channel->os_timer, channel->remainder, false);
channel->remainder = 0;
}
else {
channel->remainder = 0;
os_timer_arm_us (&channel->os_timer, OS_TIMER_DELTA_MIN, false);
}
}
static void IRAM __timer_channel_stop (struct phy_timer_t* timer, struct phy_channel_t* channel)
{
if (!channel->used) {
return;
}
os_timer_disarm (&channel->os_timer);
/* compute elapsed time */
uint32_t elapsed_time = timer_read (0) - channel->start_time;
if (channel->delta_time > elapsed_time) {
/* compute new delta time if the timer has no been expired */
channel->delta_time -= elapsed_time;
}
else {
/* otherwise deactivate the channel */
channel->used = false;
}
}
void timer_print_config(void)
{
for (unsigned i = 0; i < OS_TIMER_NUMOF; i++) {
printf("\tTIMER_DEV(%u)\t%d channel(s)\n", i,
ARRAY_SIZE(timers[i].channels));
}
}
#endif /* MODULE_ESP_SW_TIMER */