1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/drivers/mtd_spi_nor/mtd_spi_nor.c

776 lines
24 KiB
C

/*
* Copyright (C) 2016 Eistec AB
* 2017 OTA keys S.A.
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*
*/
/**
* @ingroup drivers_mtd_spi_nor
* @{
*
* @file
* @brief Driver for serial flash memory attached to SPI
*
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
* @author Vincent Dupont <vincent@otakeys.com>
*
* @}
*/
#include <stdint.h>
#include <string.h>
#include <errno.h>
#include "byteorder.h"
#include "kernel_defines.h"
#include "macros/math.h"
#include "macros/utils.h"
#include "mtd.h"
#include "mtd_spi_nor.h"
#include "time_units.h"
#include "thread.h"
#if IS_USED(MODULE_ZTIMER)
#include "ztimer.h"
#elif IS_USED(MODULE_XTIMER)
#include "xtimer.h"
#endif
#define ENABLE_DEBUG 0
#include "debug.h"
#define ENABLE_TRACE 0
#define TRACE(...) DEBUG(__VA_ARGS__)
/* after power up, on an invalid JEDEC ID, wait and read N times */
#ifndef MTD_POWER_UP_WAIT_FOR_ID
#define MTD_POWER_UP_WAIT_FOR_ID (0x0F)
#endif
#define SFLASH_CMD_4_BYTE_ADDR (0xB7) /**< enable 32 bit addressing */
#define SFLASH_CMD_3_BYTE_ADDR (0xE9) /**< enable 24 bit addressing */
#define SFLASH_CMD_ULBPR (0x98) /**< Global Block Protection Unlock */
#define MTD_64K (65536ul)
#define MTD_64K_ADDR_MASK (0xFFFF)
#define MTD_32K (32768ul)
#define MTD_32K_ADDR_MASK (0x7FFF)
#define MTD_4K (4096ul)
#define MTD_4K_ADDR_MASK (0xFFF)
#define MBIT_AS_BYTES ((1024 * 1024) / 8)
/**
* @brief JEDEC memory manufacturer ID codes.
*
* see http://www.softnology.biz/pdf/JEP106AV.pdf
* @{
*/
#define JEDEC_BANK(n) ((n) << 8)
typedef enum {
SPI_NOR_JEDEC_ATMEL = 0x1F | JEDEC_BANK(1),
SPI_NOR_JEDEC_MICROCHIP = 0xBF | JEDEC_BANK(1),
} jedec_manuf_t;
/** @} */
static inline spi_t _get_spi(const mtd_spi_nor_t *dev)
{
return dev->params->spi;
}
static void mtd_spi_acquire(const mtd_spi_nor_t *dev)
{
spi_acquire(_get_spi(dev), dev->params->cs,
dev->params->mode, dev->params->clk);
}
static void mtd_spi_release(const mtd_spi_nor_t *dev)
{
spi_release(_get_spi(dev));
}
static inline uint8_t* _be_addr(const mtd_spi_nor_t *dev, uint32_t *addr)
{
*addr = htonl(*addr);
return &((uint8_t*)addr)[4 - dev->addr_width];
}
/**
* @internal
* @brief Send command opcode followed by address, followed by a read to buffer
*
* @param[in] dev pointer to device descriptor
* @param[in] opcode command opcode
* @param[in] addr address (big endian)
* @param[out] dest read buffer
* @param[in] count number of bytes to read after the address has been sent
*/
static void mtd_spi_cmd_addr_read(const mtd_spi_nor_t *dev, uint8_t opcode,
uint32_t addr, void *dest, uint32_t count)
{
TRACE("mtd_spi_cmd_addr_read: %p, %02x, (%06"PRIx32"), %p, %" PRIu32 "\n",
(void *)dev, (unsigned int)opcode, addr, dest, count);
uint8_t *addr_buf = _be_addr(dev, &addr);
if (IS_ACTIVE(ENABLE_TRACE)) {
TRACE("mtd_spi_cmd_addr_read: addr:");
for (unsigned int i = 0; i < dev->addr_width; ++i) {
TRACE(" %02x", addr_buf[i]);
}
TRACE("\n");
}
/* Send opcode followed by address */
spi_transfer_byte(_get_spi(dev), dev->params->cs, true, opcode);
spi_transfer_bytes(_get_spi(dev), dev->params->cs, true,
(char *)addr_buf, NULL, dev->addr_width);
/* Read data */
spi_transfer_bytes(_get_spi(dev), dev->params->cs, false,
NULL, dest, count);
}
/**
* @internal
* @brief Send command opcode followed by address, followed by a write from buffer
*
* @param[in] dev pointer to device descriptor
* @param[in] opcode command opcode
* @param[in] addr address (big endian)
* @param[out] src write buffer
* @param[in] count number of bytes to write after the opcode has been sent
*/
static void mtd_spi_cmd_addr_write(const mtd_spi_nor_t *dev, uint8_t opcode,
uint32_t addr, const void *src, uint32_t count)
{
TRACE("mtd_spi_cmd_addr_write: %p, %02x, (%06"PRIx32"), %p, %" PRIu32 "\n",
(void *)dev, (unsigned int)opcode, addr, src, count);
uint8_t *addr_buf = _be_addr(dev, &addr);
if (IS_ACTIVE(ENABLE_TRACE)) {
TRACE("mtd_spi_cmd_addr_write: addr:");
for (unsigned int i = 0; i < dev->addr_width; ++i) {
TRACE(" %02x", addr_buf[i]);
}
TRACE("\n");
}
/* Send opcode followed by address */
spi_transfer_byte(_get_spi(dev), dev->params->cs, true, opcode);
/* only keep CS asserted when there is data that follows */
bool cont = (count > 0);
spi_transfer_bytes(_get_spi(dev), dev->params->cs, cont,
(char *)addr_buf, NULL, dev->addr_width);
/* Write data */
if (cont) {
spi_transfer_bytes(_get_spi(dev), dev->params->cs,
false, (void *)src, NULL, count);
}
}
/**
* @internal
* @brief Send command opcode followed by a read to buffer
*
* @param[in] dev pointer to device descriptor
* @param[in] opcode command opcode
* @param[out] dest read buffer
* @param[in] count number of bytes to write after the opcode has been sent
*/
static void mtd_spi_cmd_read(const mtd_spi_nor_t *dev, uint8_t opcode, void *dest, uint32_t count)
{
TRACE("mtd_spi_cmd_read: %p, %02x, %p, %" PRIu32 "\n",
(void *)dev, (unsigned int)opcode, dest, count);
spi_transfer_regs(_get_spi(dev), dev->params->cs, opcode, NULL, dest, count);
}
/**
* @internal
* @brief Send command opcode followed by a write from buffer
*
* @param[in] dev pointer to device descriptor
* @param[in] opcode command opcode
* @param[out] src write buffer
* @param[in] count number of bytes to write after the opcode has been sent
*/
static void __attribute__((unused)) mtd_spi_cmd_write(const mtd_spi_nor_t *dev, uint8_t opcode, const void *src, uint32_t count)
{
TRACE("mtd_spi_cmd_write: %p, %02x, %p, %" PRIu32 "\n",
(void *)dev, (unsigned int)opcode, src, count);
spi_transfer_regs(_get_spi(dev), dev->params->cs, opcode,
(void *)src, NULL, count);
}
/**
* @internal
* @brief Send command opcode
*
* @param[in] dev pointer to device descriptor
* @param[in] opcode command opcode
*/
static void mtd_spi_cmd(const mtd_spi_nor_t *dev, uint8_t opcode)
{
TRACE("mtd_spi_cmd: %p, %02x\n",
(void *)dev, (unsigned int)opcode);
spi_transfer_byte(_get_spi(dev), dev->params->cs, false, opcode);
}
static bool mtd_spi_manuf_match(const mtd_jedec_id_t *id, jedec_manuf_t manuf)
{
return manuf == ((id->bank << 8) | id->manuf);
}
/**
* @internal
* @brief Compute 8 bit parity
*/
static inline uint8_t parity8(uint8_t x)
{
/* Taken from http://stackoverflow.com/a/21618038/1805713 */
x ^= x >> 4;
x ^= x >> 2;
x ^= x >> 1;
return (x & 1);
}
/**
* @internal
* @brief Read JEDEC ID
*/
static int mtd_spi_read_jedec_id(const mtd_spi_nor_t *dev, mtd_jedec_id_t *out)
{
uint8_t buffer[JEDEC_BANK_MAX + sizeof(mtd_jedec_id_t) - 1];
DEBUG("mtd_spi_read_jedec_id: rdid=0x%02x\n",
(unsigned int)dev->params->opcode->rdid);
/* Send opcode */
mtd_spi_cmd_read(dev, dev->params->opcode->rdid, buffer, sizeof(buffer));
/* Manufacturer IDs are organized in 'banks'.
* If we read the 'next bank' instead of manufacturer ID, skip
* the byte and increment the bank counter.
*/
uint8_t bank = 0;
while (buffer[bank] == JEDEC_NEXT_BANK) {
if (++bank == JEDEC_BANK_MAX) {
DEBUG_PUTS("mtd_spi_read_jedec_id: bank out of bounds\n");
return -1;
}
}
if (parity8(buffer[bank]) == 0) {
/* saw even parity, we expected odd parity => parity error */
DEBUG("mtd_spi_read_jedec_id: Parity error (0x%02x)\n", buffer[bank]);
return -2;
}
if (buffer[bank] == 0xFF || buffer[bank] == 0x00) {
DEBUG_PUTS("mtd_spi_read_jedec_id: failed to read manufacturer ID");
return -3;
}
/* Copy manufacturer ID */
out->bank = bank + 1;
memcpy((uint8_t*)out + 1, &buffer[bank], 3);
DEBUG("mtd_spi_read_jedec_id: bank=%u manuf=0x%02x\n", (unsigned int)out->bank,
(unsigned int)out->manuf);
DEBUG("mtd_spi_read_jedec_id: device=0x%02x, 0x%02x\n",
(unsigned int)out->device[0], (unsigned int)out->device[1]);
return 0;
}
/**
* @internal
* @brief Get Flash capacity based on JEDEC ID
*
* @note The way the capacity is encoded differs between vendors.
* This formula has been tested with flash chips from Adesto,
* ISSI, Micron and Spansion, but it might not cover all cases.
* Please extend the function if necessary.
*/
static uint32_t mtd_spi_nor_get_size(const mtd_jedec_id_t *id)
{
/* old Atmel (now Adesto) parts use 5 lower bits of device ID 1 for density */
if (mtd_spi_manuf_match(id, SPI_NOR_JEDEC_ATMEL) &&
/* ID 2 is used to encode the product version, usually 1 or 2 */
(id->device[1] & ~0x3) == 0) {
/* capacity encoded as power of 32k sectors */
return (32 * 1024) << (0x1F & id->device[0]);
}
if (mtd_spi_manuf_match(id, SPI_NOR_JEDEC_MICROCHIP)) {
switch (id->device[1]) {
case 0x12: /* SST26VF020A */
case 0x8c: /* SST25VF020B */
return 2 * MBIT_AS_BYTES;
case 0x54: /* SST26WF040B */
case 0x8d: /* SST25VF040B */
return 4 * MBIT_AS_BYTES;
case 0x58: /* SST26WF080B */
case 0x8e: /* SST25VF080B */
return 8 * MBIT_AS_BYTES;
case 0x1: /* SST26VF016 */
case 0x41: /* SST26VF016B */
return 16 * MBIT_AS_BYTES;
case 0x2: /* SST26VF032 */
case 0x42: /* SST26VF032B */
return 32 * MBIT_AS_BYTES;
case 0x43: /* SST26VF064B */
case 0x53: /* SST26WF064C */
return 64 * MBIT_AS_BYTES;
}
}
/* everyone else seems to use device ID 2 for density */
return 1 << id->device[1];
}
static inline void wait_for_write_complete(const mtd_spi_nor_t *dev, uint32_t us)
{
unsigned i = 0, j = 0;
uint32_t div = 1; /* first wait one full interval */
#if IS_ACTIVE(ENABLE_DEBUG)
uint32_t diff = 0;
#endif
#if IS_ACTIVE(ENABLE_DEBUG) && IS_USED(MODULE_ZTIMER_USEC)
diff = ztimer_now(ZTIMER_USEC);
#elif IS_ACTIVE(ENABLE_DEBUG) && IS_USED(MODULE_XTIMER)
diff = xtimer_now_usec();
#endif
do {
uint8_t status;
mtd_spi_cmd_read(dev, dev->params->opcode->rdsr, &status, sizeof(status));
TRACE("mtd_spi_nor: wait device status = 0x%02x\n", (unsigned int)status);
if ((status & 1) == 0) { /* TODO magic number */
break;
}
i++;
#if IS_USED(MODULE_ZTIMER_USEC)
if (us) {
uint32_t wait_us = us / div;
uint32_t wait_min = 2;
wait_us = wait_us > wait_min ? wait_us : wait_min;
ztimer_sleep(ZTIMER_USEC, wait_us);
/* reduce the waiting time quickly if the estimate was too short,
* but still avoid busy (yield) waiting */
div++;
}
else {
j++;
thread_yield();
}
#elif IS_USED(MODULE_XTIMER)
if (us) {
uint32_t wait_us = us / div;
uint32_t wait_min = 2 * XTIMER_BACKOFF;
wait_us = wait_us > wait_min ? wait_us : wait_min;
xtimer_usleep(wait_us);
/* reduce the waiting time quickly if the estimate was too short,
* but still avoid busy (yield) waiting */
div++;
}
else {
j++;
thread_yield();
}
#else
(void)div;
(void) us;
thread_yield();
#endif
} while (1);
DEBUG("wait loop %u times, yield %u times", i, j);
#if IS_ACTIVE(ENABLE_DEBUG)
#if IS_USED(MODULE_ZTIMER_USEC)
diff = ztimer_now(ZTIMER_USEC) - diff;
#elif IS_USED(MODULE_XTIMER)
diff = xtimer_now_usec() - diff;
#endif
DEBUG(", total wait %"PRIu32"us", diff);
#endif
DEBUG("\n");
}
static void _init_pins(mtd_spi_nor_t *dev)
{
DEBUG("mtd_spi_nor_init: init pins\n");
/* CS */
spi_init_cs(_get_spi(dev), dev->params->cs);
/* Write Protect - not used by the driver */
if (gpio_is_valid(dev->params->wp)) {
gpio_init(dev->params->wp, GPIO_OUT);
gpio_set(dev->params->wp);
}
/* Hold - not used by the driver */
if (gpio_is_valid(dev->params->hold)) {
gpio_init(dev->params->hold, GPIO_OUT);
gpio_set(dev->params->hold);
}
}
static void _enable_32bit_addr(mtd_spi_nor_t *dev)
{
mtd_spi_cmd(dev, dev->params->opcode->wren);
mtd_spi_cmd(dev, SFLASH_CMD_4_BYTE_ADDR);
}
static int mtd_spi_nor_power(mtd_dev_t *mtd, enum mtd_power_state power)
{
mtd_spi_nor_t *dev = (mtd_spi_nor_t *)mtd;
mtd_spi_acquire(dev);
switch (power) {
case MTD_POWER_UP:
mtd_spi_cmd(dev, dev->params->opcode->wake);
/* fall back to polling if no timer is used */
unsigned retries = MTD_POWER_UP_WAIT_FOR_ID;
if (!IS_USED(MODULE_ZTIMER) && !IS_USED(MODULE_XTIMER)) {
retries *= dev->params->wait_chip_wake_up * 1000;
}
int res = 0;
do {
#if IS_USED(MODULE_ZTIMER_USEC)
ztimer_sleep(ZTIMER_USEC, dev->params->wait_chip_wake_up);
#elif IS_USED(MODULE_ZTIMER_MSEC)
ztimer_sleep(ZTIMER_MSEC,
DIV_ROUND_UP(dev->params->wait_chip_wake_up, US_PER_MS));
#elif IS_USED(MODULE_XTIMER)
xtimer_usleep(dev->params->wait_chip_wake_up);
#endif
res = mtd_spi_read_jedec_id(dev, &dev->jedec_id);
} while (res < 0 && --retries);
if (res < 0) {
mtd_spi_release(dev);
return -EIO;
}
/* enable 32 bit address mode */
if (dev->addr_width == 4) {
_enable_32bit_addr(dev);
}
break;
case MTD_POWER_DOWN:
mtd_spi_cmd(dev, dev->params->opcode->sleep);
break;
}
mtd_spi_release(dev);
return 0;
}
static void _set_addr_width(mtd_dev_t *mtd)
{
mtd_spi_nor_t *dev = (mtd_spi_nor_t *)mtd;
uint32_t flash_size = mtd->pages_per_sector * mtd->page_size
* mtd->sector_count;
if (flash_size > (0x1UL << 24)) {
dev->addr_width = 4;
} else {
dev->addr_width = 3;
}
}
static int mtd_spi_nor_init(mtd_dev_t *mtd)
{
DEBUG("mtd_spi_nor_init: %p\n", (void *)mtd);
mtd_spi_nor_t *dev = (mtd_spi_nor_t *)mtd;
DEBUG("mtd_spi_nor_init: -> spi: %lx, cs: %lx, opcodes: %p\n",
(unsigned long)_get_spi(dev), (unsigned long)dev->params->cs, (void *)dev->params->opcode);
/* CS, WP, Hold */
_init_pins(dev);
/* power up the MTD device*/
DEBUG_PUTS("mtd_spi_nor_init: power up MTD device");
if (mtd_spi_nor_power(mtd, MTD_POWER_UP)) {
DEBUG_PUTS("mtd_spi_nor_init: failed to power up MTD device");
return -EIO;
}
mtd_spi_acquire(dev);
int res = mtd_spi_read_jedec_id(dev, &dev->jedec_id);
if (res < 0) {
mtd_spi_release(dev);
return -EIO;
}
DEBUG("mtd_spi_nor_init: Found chip with ID: (%d, 0x%02x, 0x%02x, 0x%02x)\n",
dev->jedec_id.bank, dev->jedec_id.manuf, dev->jedec_id.device[0], dev->jedec_id.device[1]);
/* derive density from JEDEC ID */
if (mtd->sector_count == 0) {
mtd->sector_count = mtd_spi_nor_get_size(&dev->jedec_id)
/ (mtd->pages_per_sector * mtd->page_size);
}
/* SPI NOR is byte addressable; instances don't need to configure that */
assert(mtd->write_size <= 1);
mtd->write_size = 1;
_set_addr_width(mtd);
DEBUG("mtd_spi_nor_init: %" PRIu32 " bytes "
"(%" PRIu32 " sectors, %" PRIu32 " bytes/sector, "
"%" PRIu32 " pages, "
"%" PRIu32 " pages/sector, %" PRIu32 " bytes/page)\n",
mtd->pages_per_sector * mtd->sector_count * mtd->page_size,
mtd->sector_count, mtd->pages_per_sector * mtd->page_size,
mtd->pages_per_sector * mtd->sector_count,
mtd->pages_per_sector, mtd->page_size);
DEBUG("mtd_spi_nor_init: Using %u byte addresses\n", dev->addr_width);
uint8_t status;
mtd_spi_cmd_read(dev, dev->params->opcode->rdsr, &status, sizeof(status));
DEBUG("mtd_spi_nor_init: device status = 0x%02x\n", (unsigned int)status);
/* enable 32 bit address mode */
if (dev->addr_width == 4) {
_enable_32bit_addr(dev);
}
/* Global Block-Protection Unlock */
mtd_spi_cmd(dev, dev->params->opcode->wren);
mtd_spi_cmd(dev, SFLASH_CMD_ULBPR);
mtd_spi_release(dev);
/* check whether page size and sector size are powers of two (most chips' are)
* and compute the number of shifts needed to get the page and sector addresses
* from a byte address */
uint8_t shift = 0;
uint32_t page_size = mtd->page_size;
uint32_t mask = 0;
if ((page_size & (page_size - 1)) == 0) {
while ((page_size >> shift) > 1) {
++shift;
}
mask = (UINT32_MAX << shift);
}
dev->page_addr_mask = mask;
dev->page_addr_shift = shift;
DEBUG("mtd_spi_nor_init: page_addr_mask = 0x%08" PRIx32 ", page_addr_shift = %u\n",
mask, (unsigned int)shift);
mask = 0;
shift = 0;
uint32_t sector_size = mtd->page_size * mtd->pages_per_sector;
if ((sector_size & (sector_size - 1)) == 0) {
while ((sector_size >> shift) > 1) {
++shift;
}
mask = (UINT32_MAX << shift);
}
dev->sec_addr_mask = mask;
dev->sec_addr_shift = shift;
DEBUG("mtd_spi_nor_init: sec_addr_mask = 0x%08" PRIx32 ", sec_addr_shift = %u\n",
mask, (unsigned int)shift);
return 0;
}
static int mtd_spi_nor_read(mtd_dev_t *mtd, void *dest, uint32_t addr, uint32_t size)
{
DEBUG("mtd_spi_nor_read: %p, %p, 0x%" PRIx32 ", 0x%" PRIx32 "\n",
(void *)mtd, dest, addr, size);
const mtd_spi_nor_t *dev = (mtd_spi_nor_t *)mtd;
uint32_t chipsize = mtd->page_size * mtd->pages_per_sector * mtd->sector_count;
if (addr > chipsize) {
return -EOVERFLOW;
}
if ((addr + size) > chipsize) {
size = chipsize - addr;
}
if (size == 0) {
return 0;
}
mtd_spi_acquire(dev);
mtd_spi_cmd_addr_read(dev, dev->params->opcode->read, addr, dest, size);
mtd_spi_release(dev);
return 0;
}
static int mtd_spi_nor_write(mtd_dev_t *mtd, const void *src, uint32_t addr, uint32_t size)
{
uint32_t total_size = mtd->page_size * mtd->pages_per_sector * mtd->sector_count;
DEBUG("mtd_spi_nor_write: %p, %p, 0x%" PRIx32 ", 0x%" PRIx32 "\n",
(void *)mtd, src, addr, size);
if (size == 0) {
return 0;
}
const mtd_spi_nor_t *dev = (mtd_spi_nor_t *)mtd;
if (size > mtd->page_size) {
DEBUG("mtd_spi_nor_write: ERR: page program >1 page (%" PRIu32 ")!\n", mtd->page_size);
return -EOVERFLOW;
}
if (dev->page_addr_mask &&
((addr & dev->page_addr_mask) != ((addr + size - 1) & dev->page_addr_mask))) {
DEBUG("mtd_spi_nor_write: ERR: page program spans page boundary!\n");
return -EOVERFLOW;
}
if (addr + size > total_size) {
return -EOVERFLOW;
}
mtd_spi_acquire(dev);
/* write enable */
mtd_spi_cmd(dev, dev->params->opcode->wren);
/* Page program */
mtd_spi_cmd_addr_write(dev, dev->params->opcode->page_program, addr, src, size);
/* waiting for the command to complete before returning */
wait_for_write_complete(dev, 0);
mtd_spi_release(dev);
return 0;
}
static int mtd_spi_nor_write_page(mtd_dev_t *mtd, const void *src, uint32_t page, uint32_t offset,
uint32_t size)
{
const mtd_spi_nor_t *dev = (mtd_spi_nor_t *)mtd;
DEBUG("mtd_spi_nor_write_page: %p, %p, 0x%" PRIx32 ", 0x%" PRIx32 ", 0x%" PRIx32 "\n",
(void *)mtd, src, page, offset, size);
uint32_t remaining = mtd->page_size - offset;
size = MIN(remaining, size);
uint32_t addr = page * mtd->page_size + offset;
mtd_spi_acquire(dev);
/* write enable */
mtd_spi_cmd(dev, dev->params->opcode->wren);
/* Page program */
mtd_spi_cmd_addr_write(dev, dev->params->opcode->page_program, addr, src, size);
/* waiting for the command to complete before returning */
wait_for_write_complete(dev, 0);
mtd_spi_release(dev);
return size;
}
static int mtd_spi_nor_erase(mtd_dev_t *mtd, uint32_t addr, uint32_t size)
{
DEBUG("mtd_spi_nor_erase: %p, 0x%" PRIx32 ", 0x%" PRIx32 "\n",
(void *)mtd, addr, size);
mtd_spi_nor_t *dev = (mtd_spi_nor_t *)mtd;
uint32_t sector_size = mtd->page_size * mtd->pages_per_sector;
uint32_t total_size = sector_size * mtd->sector_count;
if (dev->sec_addr_mask &&
((addr & ~dev->sec_addr_mask) != 0)) {
/* This is not a requirement in hardware, but it helps in catching
* software bugs (the erase-all-your-files kind) */
DEBUG("addr = %" PRIx32 " ~dev->erase_addr_mask = %" PRIx32 "", addr, ~dev->sec_addr_mask);
DEBUG("mtd_spi_nor_erase: ERR: erase addr not aligned on %" PRIu32 " byte boundary.\n",
sector_size);
return -EOVERFLOW;
}
if (addr + size > total_size) {
return -EOVERFLOW;
}
if (size % sector_size != 0) {
return -EOVERFLOW;
}
mtd_spi_acquire(dev);
while (size) {
uint32_t us;
/* write enable */
mtd_spi_cmd(dev, dev->params->opcode->wren);
if (size == total_size) {
mtd_spi_cmd(dev, dev->params->opcode->chip_erase);
size -= total_size;
us = dev->params->wait_chip_erase;
}
else if ((dev->params->flag & SPI_NOR_F_SECT_64K) && (size >= MTD_64K) &&
((addr & MTD_64K_ADDR_MASK) == 0)) {
/* 64 KiB blocks can be erased with block erase command */
mtd_spi_cmd_addr_write(dev, dev->params->opcode->block_erase_64k, addr, NULL, 0);
addr += MTD_64K;
size -= MTD_64K;
us = dev->params->wait_64k_erase;
}
else if ((dev->params->flag & SPI_NOR_F_SECT_32K) && (size >= MTD_32K) &&
((addr & MTD_32K_ADDR_MASK) == 0)) {
/* 32 KiB blocks can be erased with block erase command */
mtd_spi_cmd_addr_write(dev, dev->params->opcode->block_erase_32k, addr, NULL, 0);
addr += MTD_32K;
size -= MTD_32K;
us = dev->params->wait_32k_erase;
}
else if ((dev->params->flag & SPI_NOR_F_SECT_4K) && (size >= MTD_4K) &&
((addr & MTD_4K_ADDR_MASK) == 0)) {
/* 4 KiB sectors can be erased with sector erase command */
mtd_spi_cmd_addr_write(dev, dev->params->opcode->sector_erase, addr, NULL, 0);
addr += MTD_4K;
size -= MTD_4K;
us = dev->params->wait_sector_erase;
}
else {
/* no suitable erase block found */
assert(0);
mtd_spi_release(dev);
return -EINVAL;
}
/* waiting for the command to complete before continuing */
wait_for_write_complete(dev, us);
}
mtd_spi_release(dev);
return 0;
}
const mtd_desc_t mtd_spi_nor_driver = {
.init = mtd_spi_nor_init,
.read = mtd_spi_nor_read,
.write = mtd_spi_nor_write,
.write_page = mtd_spi_nor_write_page,
.erase = mtd_spi_nor_erase,
.power = mtd_spi_nor_power,
};