mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2024-12-29 04:50:03 +01:00
288 lines
9.3 KiB
C
288 lines
9.3 KiB
C
/*
|
|
* Copyright (C) 2015 Freie Universität Berlin
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU Lesser
|
|
* General Public License v2.1. See the file LICENSE in the top level
|
|
* directory for more details.
|
|
*/
|
|
|
|
/**
|
|
* @defgroup drivers_periph_gpio GPIO
|
|
* @ingroup drivers_periph
|
|
* @brief Low-level GPIO peripheral driver
|
|
*
|
|
* This is a basic GPIO (General-purpose input/output) interface to allow
|
|
* platform independent access to a MCU's input/output pins. This interface is
|
|
* intentionally designed to be as simple as possible, to allow for easy
|
|
* implementation and maximum portability.
|
|
*
|
|
* The interface provides capabilities to initialize a pin as output-,
|
|
* input- and interrupt pin. With the API you can basically set/clear/toggle the
|
|
* digital signal at the hardware pin when in output mode. Configured as input you can
|
|
* read a digital value that is being applied to the pin externally. When initializing
|
|
* an external interrupt pin, you can register a callback function that is executed
|
|
* in interrupt context once the interrupt condition applies to the pin. Usually you
|
|
* can react to rising or falling signal flanks (or both).
|
|
*
|
|
* In addition the API provides to set standard input/output circuit modes such as
|
|
* e.g. internal push-pull configurations.
|
|
*
|
|
* All modern micro controllers organize their GPIOs in some form of ports,
|
|
* often named 'PA', 'PB', 'PC'..., or 'P0', 'P1', 'P2'..., or similar. Each of
|
|
* these ports is then assigned a number of pins, often 8, 16, or 32. A hardware
|
|
* pin can thus be described by its port/pin tuple. To access a pin, the
|
|
* @p GPIO_PIN(port, pin) macro should be used. For example: If your platform has
|
|
* a pin PB22, it will be port=1 and pin=22. The @p GPIO_PIN macro should be
|
|
* overridden by a MCU, to allow for efficient encoding of the the port/pin tuple.
|
|
* For example, on many platforms it is possible to `OR` the pin number with the
|
|
* corresponding ports base register address. This allows for efficient decoding
|
|
* of pin number and base address without the need of any address lookup.
|
|
*
|
|
* In case the driver does not define it, the below macro definition is used to
|
|
* simply map the port/pin tuple to the pin value. In that case, predefined GPIO
|
|
* definitions in `RIOT/boards/ * /include/periph_conf.h` will define the selected
|
|
* GPIO pin.
|
|
*
|
|
* @warning The scalar GPIO pin type `gpio_t` is deprecated and will be
|
|
* replaced by a structured GPIO pin type in a future GPIO API. Therefore,
|
|
* don't use the direct comparison of GPIO pins anymore. Instead, use the
|
|
* inline comparison functions @ref gpio_is_equal and @ref gpio_is_valid.
|
|
*
|
|
* # (Low-) Power Implications
|
|
*
|
|
* On almost all platforms, we can only control the peripheral power state of
|
|
* full ports (i.e. groups of pins), but not for single GPIO pins. Together with
|
|
* CPU specific alternate function handling for pins used by other peripheral
|
|
* drivers, this can make it quite complex to keep track of pins that are
|
|
* currently used at a certain moment. To simplify the implementations (and ease
|
|
* the memory consumption), we expect ports to be powered on (e.g. through
|
|
* peripheral clock gating) when first used and never be powered off again.
|
|
*
|
|
* GPIO driver implementations **should** power on the corresponding port during
|
|
* gpio_init() and gpio_init_int().
|
|
*
|
|
* For external interrupts to work, some platforms may need to block certain
|
|
* power modes (although this is not very likely). This should be done during
|
|
* gpio_init_int().
|
|
*
|
|
* @{
|
|
* @file
|
|
* @brief Low-level GPIO peripheral driver interface definitions
|
|
*
|
|
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
|
|
*/
|
|
|
|
#ifndef PERIPH_GPIO_H
|
|
#define PERIPH_GPIO_H
|
|
|
|
#include <limits.h>
|
|
|
|
#include "periph_cpu.h"
|
|
#include "periph_conf.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#ifndef HAVE_GPIO_T
|
|
/**
|
|
* @brief GPIO type identifier
|
|
*/
|
|
typedef unsigned int gpio_t;
|
|
#endif
|
|
|
|
#ifndef GPIO_PIN
|
|
/**
|
|
* @brief Convert (port, pin) tuple to @c gpio_t value
|
|
*/
|
|
/* Default GPIO macro maps port-pin tuples to the pin value */
|
|
#define GPIO_PIN(x,y) ((gpio_t)((x & 0) | y))
|
|
#endif
|
|
|
|
#ifndef GPIO_UNDEF
|
|
/**
|
|
* @brief GPIO pin not defined
|
|
*/
|
|
#define GPIO_UNDEF ((gpio_t)(UINT_MAX))
|
|
#endif
|
|
|
|
/**
|
|
* @brief Available pin modes
|
|
*
|
|
* Generally, a pin can be configured to be input or output. In output mode, a
|
|
* pin can further be put into push-pull or open drain configuration. Though
|
|
* this is supported by most platforms, this is not always the case, so driver
|
|
* implementations may return an error code if a mode is not supported.
|
|
*/
|
|
#ifndef HAVE_GPIO_MODE_T
|
|
typedef enum {
|
|
GPIO_IN , /**< configure as input without pull resistor */
|
|
GPIO_IN_PD, /**< configure as input with pull-down resistor */
|
|
GPIO_IN_PU, /**< configure as input with pull-up resistor */
|
|
GPIO_OUT, /**< configure as output in push-pull mode */
|
|
GPIO_OD, /**< configure as output in open-drain mode without
|
|
* pull resistor */
|
|
GPIO_OD_PU /**< configure as output in open-drain mode with
|
|
* pull resistor enabled */
|
|
} gpio_mode_t;
|
|
#endif
|
|
|
|
/**
|
|
* @brief Definition of possible active flanks for external interrupt mode
|
|
*/
|
|
#ifndef HAVE_GPIO_FLANK_T
|
|
typedef enum {
|
|
GPIO_FALLING = 0, /**< emit interrupt on falling flank */
|
|
GPIO_RISING = 1, /**< emit interrupt on rising flank */
|
|
GPIO_BOTH = 2 /**< emit interrupt on both flanks */
|
|
} gpio_flank_t;
|
|
#endif
|
|
|
|
/**
|
|
* @brief Signature of event callback functions triggered from interrupts
|
|
*
|
|
* @param[in] arg optional context for the callback
|
|
*/
|
|
typedef void (*gpio_cb_t)(void *arg);
|
|
|
|
/**
|
|
* @brief Default interrupt context for GPIO pins
|
|
*/
|
|
#ifndef HAVE_GPIO_ISR_CTX_T
|
|
typedef struct {
|
|
gpio_cb_t cb; /**< interrupt callback */
|
|
void *arg; /**< optional argument */
|
|
} gpio_isr_ctx_t;
|
|
#endif
|
|
|
|
/**
|
|
* @brief Initialize the given pin as general purpose input or output
|
|
*
|
|
* When configured as output, the pin state after initialization is undefined.
|
|
* The output pin's state **should** be untouched during the initialization.
|
|
* This behavior can however **not be guaranteed** by every platform.
|
|
*
|
|
* @param[in] pin pin to initialize
|
|
* @param[in] mode mode of the pin, see @c gpio_mode_t
|
|
*
|
|
* @return 0 on success
|
|
* @return -1 on error
|
|
*/
|
|
int gpio_init(gpio_t pin, gpio_mode_t mode);
|
|
|
|
#if defined(MODULE_PERIPH_GPIO_IRQ) || defined(DOXYGEN)
|
|
/**
|
|
* @brief Initialize a GPIO pin for external interrupt usage
|
|
*
|
|
* The registered callback function will be called in interrupt context every
|
|
* time the defined flank(s) are detected.
|
|
*
|
|
* The interrupt is activated automatically after the initialization.
|
|
*
|
|
* @note You have to add the module `periph_gpio_irq` to your project to
|
|
* enable this function
|
|
*
|
|
* @param[in] pin pin to initialize
|
|
* @param[in] mode mode of the pin, see @c gpio_mode_t
|
|
* @param[in] flank define the active flank(s)
|
|
* @param[in] cb callback that is called from interrupt context
|
|
* @param[in] arg optional argument passed to the callback
|
|
*
|
|
* @return 0 on success
|
|
* @return -1 on error
|
|
*/
|
|
int gpio_init_int(gpio_t pin, gpio_mode_t mode, gpio_flank_t flank,
|
|
gpio_cb_t cb, void *arg);
|
|
|
|
/**
|
|
* @brief Enable pin interrupt if configured as interrupt source
|
|
*
|
|
* Interrupts that would have occurred after @see gpio_irq_disable
|
|
* was called will be discarded.
|
|
*
|
|
* @note You have to add the module `periph_gpio_irq` to your project to
|
|
* enable this function
|
|
*
|
|
* @param[in] pin the pin to enable the interrupt for
|
|
*/
|
|
void gpio_irq_enable(gpio_t pin);
|
|
|
|
/**
|
|
* @brief Disable the pin interrupt if configured as interrupt source
|
|
*
|
|
* @note You have to add the module `periph_gpio_irq` to your project to
|
|
* enable this function
|
|
*
|
|
* @param[in] pin the pin to disable the interrupt for
|
|
*/
|
|
void gpio_irq_disable(gpio_t pin);
|
|
|
|
#endif /* defined(MODULE_PERIPH_GPIO_IRQ) || defined(DOXYGEN) */
|
|
|
|
/**
|
|
* @brief Get the current value of the given pin
|
|
*
|
|
* @param[in] pin the pin to read
|
|
*
|
|
* @return 0 when pin is LOW
|
|
* @return >0 for HIGH
|
|
*/
|
|
int gpio_read(gpio_t pin);
|
|
|
|
/**
|
|
* @brief Set the given pin to HIGH
|
|
*
|
|
* @param[in] pin the pin to set
|
|
*/
|
|
void gpio_set(gpio_t pin);
|
|
|
|
/**
|
|
* @brief Set the given pin to LOW
|
|
*
|
|
* @param[in] pin the pin to clear
|
|
*/
|
|
void gpio_clear(gpio_t pin);
|
|
|
|
/**
|
|
* @brief Toggle the value of the given pin
|
|
*
|
|
* @param[in] pin the pin to toggle
|
|
*/
|
|
void gpio_toggle(gpio_t pin);
|
|
|
|
/**
|
|
* @brief Set the given pin to the given value
|
|
*
|
|
* @param[in] pin the pin to set
|
|
* @param[in] value value to set the pin to, 0 for LOW, HIGH otherwise
|
|
*/
|
|
void gpio_write(gpio_t pin, int value);
|
|
|
|
/**
|
|
* @brief Test if a GPIO pin is equal to another GPIO pin
|
|
*
|
|
* @param[in] gpio1 First GPIO pin to check
|
|
* @param[in] gpio2 Second GPIO pin to check
|
|
*/
|
|
static inline int gpio_is_equal(gpio_t gpio1, gpio_t gpio2)
|
|
{
|
|
return (gpio1 == gpio2);
|
|
}
|
|
|
|
/**
|
|
* @brief Test if a GPIO pin is a valid pin and not declared as undefined.
|
|
*
|
|
* @param[in] gpio GPIO pin to check
|
|
*/
|
|
static inline int gpio_is_valid(gpio_t gpio)
|
|
{
|
|
return (gpio != GPIO_UNDEF);
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* PERIPH_GPIO_H */
|
|
/** @} */
|