mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2024-12-29 04:50:03 +01:00
d6499fa8fd
GCC 12 create a bogus array out of bounds warning as it assumes that because there is special handling for `uart == 0` and `uart == 1`, `uart` can indeed be `1`. There is an `assert(uart < UART_NUMOF)` above that would blow up prior to any out of bounds access. In any case, optimizing out the special handling of `uart == 1` for when `UART_NUMOF == 1` likely improves the generated code and fixes the warning. /home/maribu/Repos/software/RIOT/cc2650/cpu/cc26xx_cc13xx/periph/uart.c:88:8: error: array subscript 1 is above array bounds of 'uart_isr_ctx_t[1]' [-Werror=array-bounds] 88 | ctx[uart].rx_cb = rx_cb; | ~~~^~~~~~ /home/maribu/Repos/software/RIOT/cc2650/cpu/cc26xx_cc13xx/periph/uart.c:52:23: note: while referencing 'ctx' 52 | static uart_isr_ctx_t ctx[UART_NUMOF]; | ^~~ /home/maribu/Repos/software/RIOT/cc2650/cpu/cc26xx_cc13xx/periph/uart.c:89:8: error: array subscript 1 is above array bounds of 'uart_isr_ctx_t[1]' [-Werror=array-bounds] 89 | ctx[uart].arg = arg; | ~~~^~~~~~ /home/maribu/Repos/software/RIOT/cc2650/cpu/cc26xx_cc13xx/periph/uart.c:52:23: note: while referencing 'ctx' 52 | static uart_isr_ctx_t ctx[UART_NUMOF]; | ^~~
238 lines
6.0 KiB
C
238 lines
6.0 KiB
C
/*
|
|
* Copyright (C) 2016 Leon George
|
|
* Copyright (C) 2020 Locha Inc
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU Lesser
|
|
* General Public License v2.1. See the file LICENSE in the top level
|
|
* directory for more details.
|
|
*/
|
|
|
|
/**
|
|
* @ingroup cpu_cc26xx_cc13xx
|
|
* @ingroup drivers_periph_uart
|
|
* @{
|
|
*
|
|
* @file
|
|
* @brief Low-level UART driver implementation
|
|
*
|
|
* @author Leon M. George <leon@georgemail.eu>
|
|
* @author Anton Gerasimov <tossel@gmail.com>
|
|
* @author Jean Pierre Dudey <jeandudey@hotmail.com>
|
|
*
|
|
* @}
|
|
*/
|
|
|
|
#include <assert.h>
|
|
|
|
#include "cpu.h"
|
|
#include "periph/uart.h"
|
|
#include "periph_conf.h"
|
|
|
|
#include "cc26xx_cc13xx_power.h"
|
|
|
|
/**
|
|
* @brief Bit mask for the fractional part of the baudrate
|
|
*/
|
|
#define FRAC_BITS (6U)
|
|
#define FRAC_MASK (0x3f)
|
|
|
|
/**
|
|
* @brief Get the enable mask depending on enabled HW flow control
|
|
*/
|
|
#ifdef MODULE_PERIPH_UART_HW_FC
|
|
#define ENABLE_MASK (UART_CTSEN | UART_CTL_RTSEN | \
|
|
UART_CTL_RXE | UART_CTL_TXE | UART_CTL_UARTEN)
|
|
#else
|
|
#define ENABLE_MASK (UART_CTL_RXE | UART_CTL_TXE | UART_CTL_UARTEN)
|
|
#endif
|
|
|
|
/**
|
|
* @brief allocate memory to store callback functions
|
|
*/
|
|
static uart_isr_ctx_t ctx[UART_NUMOF];
|
|
|
|
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
|
|
{
|
|
assert(uart < UART_NUMOF);
|
|
|
|
uart_regs_t *uart_reg = uart_config[uart].regs;
|
|
int tx_pin = uart_config[uart].tx_pin;
|
|
int rx_pin = uart_config[uart].rx_pin;
|
|
int intn = uart_config[uart].intn;
|
|
#ifdef MODULE_PERIPH_UART_HW_FC
|
|
int rts_pin = uart_config[uart].rts_pin;
|
|
int cts_pin = uart_config[uart].cts_pin;
|
|
#endif
|
|
|
|
if ((UART_NUMOF == 1) || (uart == 0)) {
|
|
/* UART0 requires serial domain to be enabled */
|
|
if (!power_is_domain_enabled(POWER_DOMAIN_SERIAL)) {
|
|
power_enable_domain(POWER_DOMAIN_SERIAL);
|
|
}
|
|
}
|
|
#ifdef CPU_VARIANT_X2
|
|
else if (uart == 1) {
|
|
/* UART1 requires periph domain to be enabled */
|
|
if (!power_is_domain_enabled(POWER_DOMAIN_PERIPHERALS)) {
|
|
power_enable_domain(POWER_DOMAIN_PERIPHERALS);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
uart_poweron(uart);
|
|
|
|
/* disable and reset the UART */
|
|
uart_reg->CTL = 0;
|
|
|
|
/* save context */
|
|
ctx[uart].rx_cb = rx_cb;
|
|
ctx[uart].arg = arg;
|
|
|
|
/* configure pins */
|
|
if (uart == 0) {
|
|
IOC->CFG[tx_pin] = IOCFG_PORTID_UART0_TX;
|
|
IOC->CFG[rx_pin] = (IOCFG_PORTID_UART0_RX | IOCFG_INPUT_ENABLE);
|
|
#ifdef MODULE_PERIPH_UART_HW_FC
|
|
if (rts_pin != GPIO_UNDEF && cts_pin != GPIO_UNDEF) {
|
|
IOC->CFG[rts_pin] = IOCFG_PORTID_UART0_RTS;
|
|
IOC->CFG[cts_pin] = (IOCFG_PORTID_UART0_CTS | IOCFG_INPUT_ENABLE);
|
|
}
|
|
#endif
|
|
}
|
|
#ifdef CPU_VARIANT_X2
|
|
else if (uart == 1) {
|
|
IOC->CFG[tx_pin] = IOCFG_PORTID_UART1_TX;
|
|
IOC->CFG[rx_pin] = (IOCFG_PORTID_UART1_RX | IOCFG_INPUT_ENABLE);
|
|
#ifdef MODULE_PERIPH_UART_HW_FC
|
|
if (rts_pin != GPIO_UNDEF && cts_pin != GPIO_UNDEF) {
|
|
IOC->CFG[rts_pin] = IOCFG_PORTID_UART1_RTS;
|
|
IOC->CFG[cts_pin] = (IOCFG_PORTID_UART1_CTS | IOCFG_INPUT_ENABLE);
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/* calculate baud-rate */
|
|
uint32_t tmp = (CLOCK_CORECLOCK * 4);
|
|
tmp += (baudrate / 2);
|
|
tmp /= baudrate;
|
|
uart_reg->IBRD = (tmp >> FRAC_BITS);
|
|
uart_reg->FBRD = (tmp & FRAC_MASK);
|
|
|
|
/* configure line to 8N1 mode, LRCH must be written after IBRD and FBRD! */
|
|
uart_reg->LCRH = UART_LCRH_WLEN_8;
|
|
|
|
/* enable the RX interrupt */
|
|
uart_reg->IMSC = UART_IMSC_RXIM;
|
|
NVIC_EnableIRQ(intn);
|
|
|
|
/* start the UART */
|
|
uart_reg->CTL = ENABLE_MASK;
|
|
|
|
return UART_OK;
|
|
}
|
|
|
|
#ifdef MODULE_PERIPH_UART_MODECFG
|
|
int uart_mode(uart_t uart, uart_data_bits_t data_bits, uart_parity_t parity,
|
|
uart_stop_bits_t stop_bits)
|
|
{
|
|
assert(data_bits == UART_DATA_BITS_5 ||
|
|
data_bits == UART_DATA_BITS_6 ||
|
|
data_bits == UART_DATA_BITS_7 ||
|
|
data_bits == UART_DATA_BITS_8);
|
|
|
|
assert(parity == UART_PARITY_NONE ||
|
|
parity == UART_PARITY_EVEN ||
|
|
parity == UART_PARITY_ODD ||
|
|
parity == UART_PARITY_MARK ||
|
|
parity == UART_PARITY_SPACE);
|
|
|
|
assert(stop_bits == UART_STOP_BITS_1 ||
|
|
stop_bits == UART_STOP_BITS_2);
|
|
|
|
assert(uart < UART_NUMOF);
|
|
|
|
uart_regs_t *uart_reg = uart_config[uart].regs;
|
|
|
|
/* cc26xx/cc13xx does not support mark or space parity */
|
|
if (parity == UART_PARITY_MARK || parity == UART_PARITY_SPACE) {
|
|
return UART_NOMODE;
|
|
}
|
|
|
|
/* Disable UART and clear old settings */
|
|
uart_reg->CTL = 0;
|
|
uart_reg->LCRH = 0;
|
|
|
|
/* Apply setting and enable UART */
|
|
/* cppcheck-suppress redundantAssignment
|
|
* (reason: disable-enable cycle requires writing zero first) */
|
|
uart_reg->LCRH = data_bits | parity | stop_bits;
|
|
uart_reg->CTL = ENABLE_MASK;
|
|
|
|
return UART_OK;
|
|
}
|
|
#endif
|
|
|
|
void uart_write(uart_t uart, const uint8_t *data, size_t len)
|
|
{
|
|
assert(uart < UART_NUMOF);
|
|
|
|
uart_regs_t *uart_reg = uart_config[uart].regs;
|
|
|
|
for (size_t i = 0; i < len; i++) {
|
|
while (uart_reg->FR & UART_FR_TXFF) {}
|
|
uart_reg->DR = data[i];
|
|
}
|
|
}
|
|
|
|
void uart_poweron(uart_t uart)
|
|
{
|
|
assert(uart < UART_NUMOF);
|
|
|
|
uart_regs_t *uart_reg = uart_config[uart].regs;
|
|
|
|
/* Enable clock for this UART */
|
|
power_clock_enable_uart(uart);
|
|
|
|
uart_reg->CTL = ENABLE_MASK;
|
|
}
|
|
|
|
void uart_poweroff(uart_t uart)
|
|
{
|
|
assert(uart < UART_NUMOF);
|
|
|
|
uart_regs_t *uart_reg = uart_config[uart].regs;
|
|
|
|
uart_reg->CTL = 0;
|
|
|
|
/* Disable clock for this UART */
|
|
power_clock_disable_uart(uart);
|
|
}
|
|
|
|
static void isr_uart(uart_t uart)
|
|
{
|
|
assert(uart < UART_NUMOF);
|
|
|
|
uart_regs_t *uart_reg = uart_config[uart].regs;
|
|
|
|
/* remember pending interrupts */
|
|
uint32_t mis = uart_reg->MIS;
|
|
/* clear them */
|
|
uart_reg->ICR = mis;
|
|
|
|
/* read received byte and pass it to the RX callback */
|
|
if (mis & UART_MIS_RXMIS) {
|
|
ctx[uart].rx_cb(ctx[uart].arg, (uint8_t)uart_reg->DR);
|
|
}
|
|
|
|
cortexm_isr_end();
|
|
}
|
|
|
|
void isr_uart0(void) {
|
|
isr_uart(0);
|
|
}
|
|
|
|
void isr_uart1(void) {
|
|
isr_uart(1);
|
|
}
|