1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/stm32_common/periph/uart.c
2017-11-09 16:27:24 +01:00

232 lines
5.6 KiB
C

/*
* Copyright (C) 2014-2017 Freie Universität Berlin
* Copyright (C) 2016 OTA keys
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_stm32_common
* @ingroup drivers_periph_uart
* @{
*
* @file
* @brief Low-level UART driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
* @author Fabian Nack <nack@inf.fu-berlin.de>
* @author Hermann Lelong <hermann@otakeys.com>
* @author Toon Stegen <toon.stegen@altran.com>
*
* @}
*/
#include "cpu.h"
#include "sched.h"
#include "thread.h"
#include "assert.h"
#include "periph/uart.h"
#include "periph/gpio.h"
#define RXENABLE (USART_CR1_RE | USART_CR1_RXNEIE)
/**
* @brief Allocate memory to store the callback functions
*/
static uart_isr_ctx_t isr_ctx[UART_NUMOF];
static inline USART_TypeDef *dev(uart_t uart)
{
return uart_config[uart].dev;
}
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
{
uint16_t mantissa;
uint8_t fraction;
uint32_t clk;
assert(uart < UART_NUMOF);
/* save ISR context */
isr_ctx[uart].rx_cb = rx_cb;
isr_ctx[uart].arg = arg;
/* configure TX pin */
gpio_init(uart_config[uart].tx_pin, GPIO_OUT);
/* set TX pin high to avoid garbage during further initialization */
gpio_set(uart_config[uart].tx_pin);
#ifdef CPU_FAM_STM32F1
gpio_init_af(uart_config[uart].tx_pin, GPIO_AF_OUT_PP);
#else
gpio_init_af(uart_config[uart].tx_pin, uart_config[uart].tx_af);
#endif
/* configure RX pin */
if (rx_cb) {
gpio_init(uart_config[uart].rx_pin, GPIO_IN);
#ifndef CPU_FAM_STM32F1
gpio_init_af(uart_config[uart].rx_pin, uart_config[uart].rx_af);
#endif
}
#ifdef MODULE_STM32_PERIPH_UART_HW_FC
if (uart_config[uart].cts_pin != GPIO_UNDEF) {
gpio_init(uart_config[uart].cts_pin, GPIO_IN);
gpio_init(uart_config[uart].rts_pin, GPIO_OUT);
#ifdef CPU_FAM_STM32F1
gpio_init_af(uart_config[uart].rts_pin, GPIO_AF_OUT_PP);
#else
gpio_init_af(uart_config[uart].cts_pin, uart_config[uart].cts_af);
gpio_init_af(uart_config[uart].rts_pin, uart_config[uart].rts_af);
#endif
}
#endif
/* enable the clock */
periph_clk_en(uart_config[uart].bus, uart_config[uart].rcc_mask);
/* reset UART configuration -> defaults to 8N1 mode */
dev(uart)->CR1 = 0;
dev(uart)->CR2 = 0;
dev(uart)->CR3 = 0;
/* calculate and apply baudrate */
clk = periph_apb_clk(uart_config[uart].bus) / baudrate;
mantissa = (uint16_t)(clk / 16);
fraction = (uint8_t)(clk - (mantissa * 16));
dev(uart)->BRR = ((mantissa & 0x0fff) << 4) | (fraction & 0x0f);
/* enable RX interrupt if applicable */
if (rx_cb) {
NVIC_EnableIRQ(uart_config[uart].irqn);
dev(uart)->CR1 = (USART_CR1_UE | USART_CR1_TE | RXENABLE);
}
else {
dev(uart)->CR1 = (USART_CR1_UE | USART_CR1_TE);
}
#ifdef MODULE_STM32_PERIPH_UART_HW_FC
if (uart_config[uart].cts_pin != GPIO_UNDEF) {
/* configure hardware flow control */
dev(uart)->CR3 = (USART_CR3_RTSE | USART_CR3_CTSE);
}
#endif
return UART_OK;
}
void uart_write(uart_t uart, const uint8_t *data, size_t len)
{
assert(uart < UART_NUMOF);
for (size_t i = 0; i < len; i++) {
#if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32L0) \
|| defined(CPU_FAM_STM32F3) || defined(CPU_FAM_STM32L4) \
|| defined(CPU_FAM_STM32F7)
while (!(dev(uart)->ISR & USART_ISR_TXE)) {}
dev(uart)->TDR = data[i];
#else
while (!(dev(uart)->SR & USART_SR_TXE)) {}
dev(uart)->DR = data[i];
#endif
}
/* make sure the function is synchronous by waiting for the transfer to
* finish */
#if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32L0) \
|| defined(CPU_FAM_STM32F3) || defined(CPU_FAM_STM32L4) \
|| defined(CPU_FAM_STM32F7)
while (!(dev(uart)->ISR & USART_ISR_TC)) {}
#else
while (!(dev(uart)->SR & USART_SR_TC)) {}
#endif
}
void uart_poweron(uart_t uart)
{
assert(uart < UART_NUMOF);
periph_clk_en(uart_config[uart].bus, uart_config[uart].rcc_mask);
}
void uart_poweroff(uart_t uart)
{
assert(uart < UART_NUMOF);
periph_clk_en(uart_config[uart].bus, uart_config[uart].rcc_mask);
}
static inline void irq_handler(uart_t uart)
{
#if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32L0) \
|| defined(CPU_FAM_STM32F3) || defined(CPU_FAM_STM32L4) \
|| defined(CPU_FAM_STM32F7)
uint32_t status = dev(uart)->ISR;
if (status & USART_ISR_RXNE) {
isr_ctx[uart].rx_cb(isr_ctx[uart].arg, (uint8_t)dev(uart)->RDR);
}
if (status & USART_ISR_ORE) {
dev(uart)->ICR |= USART_ICR_ORECF; /* simply clear flag on overrun */
}
#else
uint32_t status = dev(uart)->SR;
if (status & USART_SR_RXNE) {
isr_ctx[uart].rx_cb(isr_ctx[uart].arg, (uint8_t)dev(uart)->DR);
}
if (status & USART_SR_ORE) {
/* ORE is cleared by reading SR and DR sequentially */
dev(uart)->DR;
}
#endif
cortexm_isr_end();
}
#ifdef UART_0_ISR
void UART_0_ISR(void)
{
irq_handler(UART_DEV(0));
}
#endif
#ifdef UART_1_ISR
void UART_1_ISR(void)
{
irq_handler(UART_DEV(1));
}
#endif
#ifdef UART_2_ISR
void UART_2_ISR(void)
{
irq_handler(UART_DEV(2));
}
#endif
#ifdef UART_3_ISR
void UART_3_ISR(void)
{
irq_handler(UART_DEV(3));
}
#endif
#ifdef UART_4_ISR
void UART_4_ISR(void)
{
irq_handler(UART_DEV(4));
}
#endif
#ifdef UART_5_ISR
void UART_5_ISR(void)
{
irq_handler(UART_DEV(5));
}
#endif