1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/stm32/dist/clk_conf/clk_conf.c
Gilles DOFFE d78e13e906 cpu/stm32: add stm32mp1 support to clk_conf
clk_conf is a useful tool to produce clock headers for new boards.
But it only supports STM32Fx families.
This commits add the definition of a new family: STM32MP1.
Only the STM32MP157 is supported for now.

First build clk_conf:
$ make -C cpu/stm32/dist/clk_conf/

Clock header can be generated with the following command once clk_conf is
built:
$ cpu/stm32/dist/clk_conf/clk_conf stm32mp157 208000000 24000000 1
This command line will produce a core clock of 208MHz with a 24MHz HSE
oscillator and will use LSE clock which corresponds to the STM32MP157C-DK2
board configuration.
The command will output the header to copy paste into the periph_conf.h of
the board:

/**
 * @name    Clock settings
 *
 * @note    This is auto-generated from
 *          `cpu/stm32/dist/clk_conf/clk_conf.c`
 * @{
 */
/* give the target core clock (HCLK) frequency [in Hz],
 * maximum: 209MHz */
#define CLOCK_CORECLOCK     (208000000U)
/* 0: no external high speed crystal available
 * else: actual crystal frequency [in Hz] */
#define CLOCK_HSE           (24000000U)
/* 0: no external low speed crystal available,
 * 1: external crystal available (always 32.768kHz) */
#define CLOCK_LSE           (1U)
/* peripheral clock setup */
#define CLOCK_MCU_DIV       RCC_MCUDIVR_MCUDIV_1     /* max 209MHz */
#define CLOCK_MCU           (CLOCK_CORECLOCK / 1)
#define CLOCK_APB1_DIV      RCC_APB1DIVR_APB1DIV_2     /* max 104MHz */
#define CLOCK_APB1          (CLOCK_CORECLOCK / 2)
#define CLOCK_APB2_DIV      RCC_APB2DIVR_APB2DIV_2     /* max 104MHz */
#define CLOCK_APB2          (CLOCK_CORECLOCK / 2)
#define CLOCK_APB3_DIV      RCC_APB3DIVR_APB3DIV_2     /* max 104MHz */
#define CLOCK_APB3          (CLOCK_CORECLOCK / 2)

/* Main PLL factors */
#define CLOCK_PLL_M          (2)
#define CLOCK_PLL_N          (52)
#define CLOCK_PLL_P          (3)
#define CLOCK_PLL_Q          (13)
/** @} */

This result has been verified with STM32CubeMX, the official ST tool.

Signed-off-by: Gilles DOFFE <gilles.doffe@savoirfairelinux.com>
2020-11-13 10:43:08 +01:00

546 lines
17 KiB
C

/*
* Copyright (C) 2017 OTA keys S.A.
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @brief Compute clock constants for STM32F[2|4|7] CPUs
*
*
* @author Vincent Dupont <vincent@otakeys.com>
*
* @}
*/
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
#include <ctype.h>
#include "clk_conf.h"
#define ENABLE_DEBUG 0
#if ENABLE_DEBUG
#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
#else
#define DEBUG(...)
#endif
/**
* @brief Check if N/P pair is valid
*
* Check if N/P (alternatively N/Q or N/R) pair is valid with given @p vco_in and
* @p pll_out
*
* @param[in] n
* @param[in] p
* @param[in] vco_in
* @param[in] pll_out
*
* @return 1 if pair is valid, 0 otherwise
*/
static int is_n_ok(const pll_cfg_t *cfg, unsigned n, unsigned p,
unsigned vco_in, unsigned pll_out)
{
if (n >= cfg->min_n && n <= cfg->max_n &&
vco_in * n >= cfg->min_vco_output && vco_in * n <= cfg->max_vco_output &&
vco_in * n / p == pll_out) {
return 1;
}
else {
return 0;
}
}
/**
* @brief Compute PLL factors
*
* @param[in] pll_in PLL input frequency
* @param[in] pll_p_out PLL P output frequency (0 if P is not needed)
* @param[in] pll_q_out PLL Q output frequency (0 if Q is not needed)
* @param[in] pll_r_out PLL R output frequency (0 if R is not needed)
* @param[in,out] m M factor, can be preset (0, if it has to be calculated)
* @param[out] n N factor
* @param[out] p P factor
* @param[out] q Q factor
* @param[out] r R factor
*
* @return -1 if no P,N pair can be computed with given @p pll_in and @p pll_p_out
* @return 1 if no Q can be computed, M, N and P are valid
* @return 2 if no R can be computed, M, M and P are valid
* @return 3 if no Q nor R can be computed, M, M and P are valid
* @return 0 if M, N, P, Q, R are valid
*/
static int compute_pll(const pll_cfg_t *cfg, unsigned pll_in,
unsigned pll_p_out, unsigned pll_q_out, unsigned pll_r_out,
unsigned *m, unsigned *n,
unsigned *p, unsigned *q, unsigned *r)
{
(void)pll_r_out;
(void)r;
int res = 0;
unsigned vco_in;
if (*m == 0) {
unsigned found_m = 0;
unsigned found_n;
unsigned found_p;
unsigned found_q;
unsigned found_r;
unsigned found_res;
*m = cfg->min_m;
while (*m <= cfg->max_m && (res = compute_pll(cfg, pll_in, pll_p_out,
pll_q_out, pll_r_out,
m, n, p, q, r)) != 0) {
if (res > 0 && !found_m) {
found_m = *m;
found_n = *n;
found_p = *p;
found_q = *q;
found_r = *r;
found_res = res;
}
*m += cfg->inc_m;
}
if (res == 0) {
return 0;
}
if (found_m) {
*m = found_m;
*n = found_n;
*p = found_p;
*q = found_q;
*r = found_r;
return found_res;
}
else {
return -1;
}
}
else {
vco_in = pll_in / *m;
DEBUG("M=%u, vco_in=%u\n", *m, vco_in);
}
if (*m < cfg->min_m || *m > cfg->max_m ||
vco_in < cfg->min_vco_input || vco_in > cfg->max_vco_input) {
DEBUG("Invalid M=%u\n", *m);
return -1;
}
if (pll_p_out) {
DEBUG("Computing P for freq=%u\n", pll_p_out);
for (*p = cfg->max_p; *p >= cfg->min_p; *p -= cfg->inc_p) {
*n = *p * pll_p_out / vco_in;
DEBUG("Trying P=%u: N=%u\n", *p, *n);
if (is_n_ok(cfg, *n, *p, vco_in, pll_p_out)) {
DEBUG("Found M=%u, N=%u, P=%u\n", *m, *n, *p);
break;
}
}
if (*p < cfg->min_p) {
*p += cfg->inc_p;
}
if (!is_n_ok(cfg, *n, *p, vco_in, pll_p_out)) {
return -1;
}
}
if (pll_q_out) {
DEBUG("Computing Q for freq=%u\n", pll_q_out);
for (*q = cfg->max_q; *q >= cfg->min_q; *q -= cfg->inc_q) {
if (!pll_p_out) {
*n = *q * pll_q_out / vco_in;
}
DEBUG("Trying Q=%u: N=%u\n", *q, *n);
if (is_n_ok(cfg, *n, *q, vco_in, pll_q_out)) {
DEBUG("Found M=%u, N=%u, Q=%u\n", *m, *n, *q);
break;
}
}
if (*q < cfg->min_q) {
*q += cfg->inc_q;
}
if (!is_n_ok(cfg, *n, *q, vco_in, pll_q_out)) {
*q = 0;
res |= 1;
}
}
/* todo, compute r */
return res;
}
static void usage(char **argv)
{
fprintf(stderr, "usage: %s <cpu_model> <coreclock> <hse_freq> <lse> [pll_i2s_src] "
"[pll_i2s_q_out] [pll_sai_q_out]\n", argv[0]);
}
#define HSI 0
#define HSE 1
int main(int argc, char **argv)
{
int char_offset = 0;
const unsigned int* stm32_model_p = stm32_f_model;
const clk_cfg_t* stm32_clk_cfg_p = stm32_f_clk_cfg;
int model_max = MODEL_F_MAX;
if (argc < 2) {
usage(argv);
return 1;
}
if (strlen(argv[1]) < 9
|| !isdigit(argv[1][6])
|| !isdigit(argv[1][7])
|| !isdigit(argv[1][8])
|| ((argv[1][5] != 'f') && (argv[1][5] != 'F')
/* && (argv[1][5] != 'l') && (argv[1][5] != 'L') */)) {
if (strlen(argv[1]) < 10
|| !isdigit(argv[1][7])
|| !isdigit(argv[1][8])
|| !isdigit(argv[1][9])
|| ((argv[1][5] != 'm') && (argv[1][5] != 'M'))
|| ((argv[1][6] != 'p') && (argv[1][5] != 'p'))
) {
fprintf(stderr, "Invalid model : %s\n", argv[1]);
return 1;
}
char_offset = 1;
stm32_model_p = stm32_model_mp;
stm32_clk_cfg_p = stm32_mp_clk_cfg;
model_max = MODEL_MP_MAX;
}
int model = atoi(argv[1] + 6 + char_offset);
int i;
for (i = 0; i < model_max; i++) {
if (stm32_model_p[i] == model) {
break;
}
}
if (i == model_max) {
fprintf(stderr, "Unsupported CPU model %s\n", argv[1]);
return 1;
}
const clk_cfg_t *cfg = &stm32_clk_cfg_p[i];
/* print help for given cpu */
if (argc < 5) {
usage(argv);
fprintf(stderr, "Max values for stm32f%03d:\n", model);
fprintf(stderr, " Max coreclock: %u Hz\n"
" Max APB1: %u Hz\n"
" Max APB2: %u Hz\n",
cfg->max_coreclock, cfg->max_apb1, cfg->max_apb2);
fprintf(stderr, "Additional PLLs:\n"
" PLL I2S: %d\n"
" PLL SAI: %d\n"
" Alternate 48MHz source: ",
cfg->has_pll_i2s, cfg->has_pll_sai);
if (cfg->has_alt_48MHz & ALT_48MHZ_I2S) {
fprintf(stderr, "PLL I2S\n");
}
else if (cfg->has_alt_48MHz & ALT_48MHZ_SAI) {
fprintf(stderr, "PLL SAI\n");
}
else {
fprintf(stderr, "None\n");
}
return 0;
}
/* parse command line arguments */
unsigned coreclock = atoi(argv[2]);
unsigned pll_in = atoi(argv[3]);
int pll_src;
if (pll_in == 0) {
pll_in = cfg->hsi;
pll_src = HSI;
}
else {
pll_src = HSE;
}
unsigned is_lse = atoi(argv[4]) ? 1 : 0;
unsigned pll_i2s_input = 0;
if (argc > 5) {
pll_i2s_input = atoi(argv[5]);
}
unsigned pll_i2s_p_out = 0;
unsigned pll_i2s_q_out = 0;
if (argc > 6) {
pll_i2s_q_out = atoi(argv[6]);
}
unsigned pll_sai_p_out = 0;
unsigned pll_sai_q_out = 0;
if (argc > 7) {
pll_sai_q_out = atoi(argv[7]);
}
if (cfg->max_coreclock && coreclock > cfg->max_coreclock) {
fprintf(stderr, "Invalid coreclock (max=%u)\n", cfg->max_coreclock);
return 1;
}
fprintf(stderr, "Computing settings for stm32f%03d CPU...\n", model);
unsigned m = 0;
unsigned n = 0;
unsigned p = 0;
unsigned q = 0;
unsigned r = 0;
unsigned m_i2s = 0;
unsigned n_i2s = 0;
unsigned p_i2s = 0;
unsigned q_i2s = 0;
unsigned r_i2s = 0;
unsigned m_sai = 0;
unsigned n_sai = 0;
unsigned p_sai = 0;
unsigned q_sai = 0;
unsigned r_sai = 0;
bool use_alt_48MHz = false;
unsigned clock_48MHz = cfg->need_48MHz ? 48000000U : 0;
if ((cfg->hsi_prediv) && (pll_src == HSI)) {
m = cfg->hsi_prediv;
}
/* main PLL */
/* try to match coreclock with P output and 48MHz for Q output (USB) */
switch (compute_pll(&cfg->pll, pll_in, coreclock, clock_48MHz, 0,
&m, &n, &p, &q, &r)) {
case -1:
/* no config available */
fprintf(stderr, "Unable to compute main PLL factors\n");
return 1;
case 1:
/* Q not OK */
fprintf(stderr, "Need to use an alternate 48MHz src...");
if (cfg->has_pll_i2s && (cfg->has_alt_48MHz & ALT_48MHZ_I2S) == ALT_48MHZ_I2S) {
puts("PLL I2S");
use_alt_48MHz = true;
if (pll_i2s_q_out != 0 && pll_i2s_q_out != 48000000U) {
fprintf(stderr, "Invalid PLL I2S Q output freq: %u\n", pll_i2s_q_out);
return 1;
}
pll_i2s_q_out = 48000000U;
}
else if (cfg->has_pll_sai && (cfg->has_alt_48MHz & ALT_48MHZ_SAI)) {
fprintf(stderr, "PLL SAI...");
use_alt_48MHz = true;
if ((cfg->has_alt_48MHz & ALT_48MHZ_P) &&
(pll_sai_p_out == 0 || pll_sai_p_out == 48000000U)) {
fprintf(stderr, "P\n");
pll_sai_p_out = 48000000U;
}
else if (!(cfg->has_alt_48MHz & ALT_48MHZ_P) &&
(pll_sai_q_out == 0 || pll_sai_q_out == 48000000U)) {
fprintf(stderr, "Q\n");
pll_sai_q_out = 48000000U;
}
else {
if (cfg->has_alt_48MHz & ALT_48MHZ_P) {
fprintf(stderr, "Invalid PLL SAI P output freq: %u\n", pll_sai_p_out);
} else {
fprintf(stderr, "Invalid PLL SAI Q output freq: %u\n", pll_sai_q_out);
}
return 1;
}
}
else {
fprintf(stderr, "No other source available\n");
return 1;
}
break;
default:
break;
}
/* PLL I2S */
if (pll_i2s_p_out || pll_i2s_q_out) {
unsigned *_m;
unsigned _in;
if (cfg->has_pll_i2s_m) {
_m = &m_i2s;
}
else {
_m = &m;
}
if (cfg->has_pll_i2s_alt_input && pll_i2s_input) {
_in = pll_i2s_input;
}
else {
_in = pll_in;
}
if (compute_pll(&cfg->pll, _in, pll_i2s_p_out, pll_i2s_q_out, 0,
_m, &n_i2s, &p_i2s, &q_i2s, &r_i2s) != 0) {
fprintf(stderr, "Unable to compute 48MHz output using PLL I2S\n");
return 1;
}
}
/* PLL SAI */
if (pll_sai_p_out || pll_sai_q_out) {
if (compute_pll(&cfg->pll, pll_in, pll_sai_p_out, pll_sai_q_out, 0,
&m_sai, &n_sai, &p_sai, &q_sai, &r_sai) != 0) {
puts("Unable to compute 48MHz output using PLL I2S");
return 1;
}
if (!cfg->has_pll_sai_m && m != m_sai) {
m = m_sai;
DEBUG("Retry to compute main PLL with M=%u\n", m);
if (compute_pll(&cfg->pll, pll_in, coreclock, clock_48MHz, 0,
&m, &n, &p, &q, &r) < 0) {
fprintf(stderr, "Unable to compute 48MHz output using PLL I2S\n");
return 1;
}
}
}
/* APB prescalers */
unsigned apb1_pre;
unsigned apb2_pre;
unsigned apb3_pre;
for (apb1_pre = 1; apb1_pre <= 16; apb1_pre <<= 1) {
if (coreclock / apb1_pre <= cfg->max_apb1) {
break;
}
}
if (cfg->family != STM32F0) {
for (apb2_pre = 1; apb2_pre <= 16; apb2_pre <<= 1) {
if (coreclock / apb2_pre <= cfg->max_apb2) {
break;
}
}
}
if (cfg->family == STM32MP1) {
for (apb3_pre = 1; apb3_pre <= 16; apb3_pre <<= 1) {
if (coreclock / apb3_pre <= cfg->max_apb3) {
break;
}
}
}
/* Print constants */
fprintf(stderr, "==============================================================\n");
fprintf(stderr, "Please copy the following code into your board's periph_conf.h\n\n");
printf("/**\n"
" * @name Clock settings\n"
" *\n"
" * @note This is auto-generated from\n"
" * `cpu/stm32_common/dist/clk_conf/clk_conf.c`\n"
" * @{\n"
" */\n");
printf("/* give the target core clock (HCLK) frequency [in Hz],\n"
" * maximum: %uMHz */\n", cfg->max_coreclock / 1000000U);
printf("#define CLOCK_CORECLOCK (%uU)\n", coreclock);
printf("/* 0: no external high speed crystal available\n"
" * else: actual crystal frequency [in Hz] */\n"
"#define CLOCK_HSE (%uU)\n", pll_src ? pll_in : 0);
printf("/* 0: no external low speed crystal available,\n"
" * 1: external crystal available (always 32.768kHz) */\n"
"#define CLOCK_LSE (%uU)\n", is_lse);
printf("/* peripheral clock setup */\n");
if (cfg->family != STM32MP1) {
printf("#define CLOCK_AHB_DIV RCC_CFGR_HPRE_DIV1\n"
"#define CLOCK_AHB (CLOCK_CORECLOCK / 1)\n");
}
if (cfg->family == STM32F0) {
printf("#define CLOCK_APB1_DIV RCC_CFGR_PPRE_DIV%u /* max %uMHz */\n"
"#define CLOCK_APB1 (CLOCK_CORECLOCK / %u)\n",
apb1_pre, cfg->max_apb1 / 1000000U, apb1_pre);
printf("#define CLOCK_APB2 (CLOCK_APB1)\n");
}
else if (cfg->family == STM32MP1) {
/* TODO: Set to 1 by default, conf_clk is not able to handle this parameter */
printf("#define CLOCK_MCU_DIV RCC_MCUDIVR_MCUDIV_1 /* max %uMHz */\n"
"#define CLOCK_MCU (CLOCK_CORECLOCK / 1)\n",
cfg->max_coreclock / 1000000U);
printf("#define CLOCK_APB1_DIV RCC_APB1DIVR_APB1DIV_%u /* max %uMHz */\n"
"#define CLOCK_APB1 (CLOCK_CORECLOCK / %u)\n",
apb1_pre, cfg->max_apb1 / 1000000U, apb1_pre);
printf("#define CLOCK_APB2_DIV RCC_APB2DIVR_APB2DIV_%u /* max %uMHz */\n"
"#define CLOCK_APB2 (CLOCK_CORECLOCK / %u)\n",
apb2_pre, cfg->max_apb2 / 1000000U, apb2_pre);
printf("#define CLOCK_APB3_DIV RCC_APB3DIVR_APB3DIV_%u /* max %uMHz */\n"
"#define CLOCK_APB3 (CLOCK_CORECLOCK / %u)\n",
apb3_pre, cfg->max_apb3 / 1000000U, apb3_pre);
}
else {
printf("#define CLOCK_APB1_DIV RCC_CFGR_PPRE1_DIV%u /* max %uMHz */\n"
"#define CLOCK_APB1 (CLOCK_CORECLOCK / %u)\n",
apb1_pre, cfg->max_apb1 / 1000000U, apb1_pre);
printf("#define CLOCK_APB2_DIV RCC_CFGR_PPRE2_DIV%u /* max %uMHz */\n"
"#define CLOCK_APB2 (CLOCK_CORECLOCK / %u)\n",
apb2_pre, cfg->max_apb2 / 1000000U, apb2_pre);
}
if (cfg->family == STM32F0 || cfg->family == STM32F1 || cfg->family == STM32F3) {
printf("\n/* PLL factors */\n");
printf("#define CLOCK_PLL_PREDIV (%u)\n", m);
printf("#define CLOCK_PLL_MUL (%u)\n", n);
}
else {
printf("\n/* Main PLL factors */\n");
printf("#define CLOCK_PLL_M (%u)\n", m);
printf("#define CLOCK_PLL_N (%u)\n", n);
printf("#define CLOCK_PLL_P (%u)\n", p);
printf("#define CLOCK_PLL_Q (%u)\n", q);
}
if (pll_i2s_p_out || pll_i2s_q_out) {
printf("\n/* PLL I2S configuration */\n");
printf("#define CLOCK_ENABLE_PLL_I2S (1)\n");
if (cfg->has_pll_i2s_alt_input && pll_i2s_input) {
printf("#define CLOCK_PLL_I2S_SRC (RCC_PLLI2SCFGR_PLLI2SSRC)\n");
}
else {
printf("#define CLOCK_PLL_I2S_SRC (0)\n");
}
if (cfg->has_pll_i2s_m) {
printf("#define CLOCK_PLL_I2S_M (%u)\n", m_i2s);
}
printf("#define CLOCK_PLL_I2S_N (%u)\n", n_i2s);
printf("#define CLOCK_PLL_I2S_P (%u)\n", p_i2s);
printf("#define CLOCK_PLL_I2S_Q (%u)\n", q_i2s);
}
if (pll_sai_p_out || pll_sai_q_out) {
printf("\n/* PLL SAI configuration */\n");
printf("#define CLOCK_ENABLE_PLL_SAI (1)\n");
if (cfg->has_pll_sai_m) {
printf("#define CLOCK_PLL_SAI_M (%u)\n", m_sai);
}
printf("#define CLOCK_PLL_SAI_N (%u)\n", n_sai);
printf("#define CLOCK_PLL_SAI_P (%u)\n", p_sai);
printf("#define CLOCK_PLL_SAI_Q (%u)\n", q_sai);
}
if (use_alt_48MHz) {
printf("\n/* Use alternative source for 48MHz clock */\n");
printf("#define CLOCK_USE_ALT_48MHZ (1)\n");
}
printf("/** @} */\n");
return 0;
}