1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/esp32/syscalls.c
Gunar Schorcht 9b3095fd6b cpu/esp32: system_get_time_ms cleanup
There is an existing function that returns the system time in us as a 64 bit value. Converting this 64 value in us to a 32 bit value in ms is more easier and uses the complete 32 bit range. Using only the low part of the 64 bit system time in us and dividing it by 1e3 cuts the 32 bit range.
2019-12-24 14:35:37 +01:00

491 lines
13 KiB
C

/*
* Copyright (C) 2018 Gunar Schorcht
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_esp32
* @{
*
* @file
* @brief Implementation of required system calls
*
* @author Gunar Schorcht <gunar@schorcht.net>
*
* @}
*/
#define ENABLE_DEBUG (0)
#include "debug.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/errno.h>
#include <sys/reent.h>
#include <sys/signal.h>
#include <sys/times.h>
#include <sys/unistd.h>
#include "esp_common.h"
#include "cpu_conf.h"
#include "irq.h"
#include "irq_arch.h"
#include "kernel_defines.h"
#include "log.h"
#include "mutex.h"
#include "rmutex.h"
#include "sched.h"
#include "periph/pm.h"
#include "timex.h"
#include "esp_attr.h"
#include "esp/xtensa_ops.h"
#include "esp/common_macros.h"
#include "rom/ets_sys.h"
#include "rom/libc_stubs.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_struct.h"
#include "soc/timer_group_reg.h"
#include "soc/timer_group_struct.h"
#include "xtensa/xtensa_api.h"
#include "periph_cpu.h"
#include "syscalls.h"
#ifdef MODULE_ESP_IDF_HEAP
#include "heap/esp_heap_caps.h"
#include "heap/include/multi_heap.h"
#else
#include "malloc.h"
#endif
#define MHZ 1000000UL
#ifndef MODULE_PTHREAD
#define PTHREAD_CANCEL_DISABLE 1
/*
* This is a dummy function to avoid undefined references when linking
* against newlib and module pthread is not used.
*/
int pthread_setcancelstate(int state, int *oldstate)
{
if (oldstate) {
*oldstate = PTHREAD_CANCEL_DISABLE;
}
return 0;
}
#endif /* MODULE_PTHREAD*/
/**
* @name Locking functions
*
* Following function implements the lock mechanism in newlib. The only static
* mutex defined here is the _malloc_rmtx to avoid that memory management
* functions try to lock before RIOT's threads are running. All other mutexes
* are allocated dynamically.
*/
static rmutex_t _malloc_rmtx = RMUTEX_INIT;
void IRAM _lock_init(_lock_t *lock)
{
CHECK_PARAM (sched_active_thread != 0);
CHECK_PARAM (lock != NULL);
CHECK_PARAM (*lock != ((_lock_t)&_malloc_rmtx));
mutex_t* mtx = malloc (sizeof(mutex_t));
if (mtx) {
memset (mtx, 0, sizeof(mutex_t));
*lock = (_lock_t)mtx;
}
}
void IRAM _lock_init_recursive(_lock_t *lock)
{
CHECK_PARAM (sched_active_thread != 0);
CHECK_PARAM (lock != NULL);
CHECK_PARAM (*lock != ((_lock_t)&_malloc_rmtx));
rmutex_t* rmtx = malloc (sizeof(rmutex_t));
if (rmtx) {
memset (rmtx, 0, sizeof(rmutex_t));
*lock = (_lock_t)rmtx;
}
}
void IRAM _lock_close(_lock_t *lock)
{
CHECK_PARAM (lock != NULL);
CHECK_PARAM (*lock != ((_lock_t)&_malloc_rmtx));
free ((void*)*lock);
*lock = 0;
}
void IRAM _lock_close_recursive(_lock_t *lock)
{
CHECK_PARAM (lock != NULL);
CHECK_PARAM (*lock != ((_lock_t)&_malloc_rmtx));
free ((void*)*lock);
*lock = 0;
}
void IRAM _lock_acquire(_lock_t *lock)
{
CHECK_PARAM (sched_active_thread != 0);
CHECK_PARAM (lock != NULL && *lock != 0);
mutex_lock ((mutex_t*)*lock);
}
void IRAM _lock_acquire_recursive(_lock_t *lock)
{
CHECK_PARAM (sched_active_thread != 0);
CHECK_PARAM (lock != NULL && *lock != 0);
rmutex_lock ((rmutex_t*)*lock);
}
int IRAM _lock_try_acquire(_lock_t *lock)
{
CHECK_PARAM_RET (sched_active_thread != 0, 0);
CHECK_PARAM_RET (lock != NULL && *lock != 0, 0);
return rmutex_trylock ((rmutex_t*)*lock);
}
int IRAM _lock_try_acquire_recursive(_lock_t *lock)
{
CHECK_PARAM_RET (sched_active_thread != 0, 0);
CHECK_PARAM_RET (lock != NULL && *lock != 0, 0);
return mutex_trylock ((mutex_t*)*lock);
}
void IRAM _lock_release(_lock_t *lock)
{
CHECK_PARAM (sched_active_thread != 0);
CHECK_PARAM (lock != NULL && *lock != 0);
mutex_unlock ((mutex_t*)*lock);
}
void IRAM _lock_release_recursive(_lock_t *lock)
{
CHECK_PARAM (sched_active_thread != 0);
CHECK_PARAM (lock != NULL && *lock != 0);
rmutex_unlock ((rmutex_t*)*lock);
}
/**
* @name Memory allocation functions
*/
#ifdef MODULE_ESP_IDF_HEAP
extern void *heap_caps_malloc_default( size_t size );
extern void *heap_caps_realloc_default( void *ptr, size_t size );
void* IRAM_ATTR __wrap__malloc_r(struct _reent *r, size_t size)
{
return heap_caps_malloc_default( size );
}
void IRAM_ATTR __wrap__free_r(struct _reent *r, void* ptr)
{
heap_caps_free( ptr );
}
void* IRAM_ATTR __wrap__realloc_r(struct _reent *r, void* ptr, size_t size)
{
return heap_caps_realloc_default( ptr, size );
}
void* IRAM_ATTR __wrap__calloc_r(struct _reent *r, size_t count, size_t size)
{
void* result = heap_caps_malloc_default(count * size);
if (result) {
bzero(result, count * size);
}
return result;
}
unsigned int IRAM get_free_heap_size (void)
{
return heap_caps_get_free_size( MALLOC_CAP_DEFAULT );
}
void heap_stats(void)
{
multi_heap_info_t hinfo;
heap_caps_get_info(&hinfo, MALLOC_CAP_DEFAULT);
size_t _free = hinfo.total_free_bytes;
size_t _alloc = hinfo.total_allocated_bytes;
printf("heap: %u (used %u free %u) [bytes]\n",
(unsigned)(_free + _alloc), (unsigned)_alloc, (unsigned)_free);
}
#else /* MODULE_ESP_IDF_HEAP */
/* for compatibility with ESP-IDF heap functions */
void* IRAM heap_caps_malloc( size_t size, uint32_t caps )
{
(void)caps;
return malloc(size);
}
void* IRAM heap_caps_calloc( size_t n, size_t size, uint32_t caps)
{
(void)caps;
return calloc(n, size);
}
void* IRAM heap_caps_realloc( void *ptr, size_t size )
{
return realloc(ptr, size);
}
extern uint8_t _eheap; /* end of heap (defined in esp32.common.ld) */
extern uint8_t _sheap; /* start of heap (defined in esp32.common.ld) */
extern uint8_t *heap_top; /* current top of heap as defined in newlib_syscalls_default */
unsigned int IRAM get_free_heap_size (void)
{
struct mallinfo minfo = mallinfo();
return &_eheap - &_sheap - minfo.uordblks;
}
void heap_stats(void)
{
printf("heap: %u (used %u, free %u) [bytes]\n", (unsigned)(&_eheap - &_sheap),
&_eheap - &_sheap - get_free_heap_size(), get_free_heap_size());
}
#endif /* MODULE_ESP_IDF_HEAP */
/* alias for compatibility with espressif/wifi_libs */
uint32_t esp_get_free_heap_size( void ) __attribute__((alias("get_free_heap_size")));
/**
* @name Other system functions
*/
void _abort(void)
{
ets_printf("#! abort called: powering off\n");
pm_off();
while(1);
}
void _exit_r(struct _reent *r, int status)
{
_exit(status);
}
struct _reent* __getreent(void) {
return _GLOBAL_REENT;
}
static int _no_sys_func (struct _reent *r)
{
DEBUG("%s: system function does not exist\n", __func__);
r->_errno = ENOSYS;
return -1;
}
static struct _reent s_reent;
static struct syscall_stub_table s_stub_table =
{
.__getreent = &__getreent,
._malloc_r = &_malloc_r,
._free_r = &_free_r,
._realloc_r = &_realloc_r,
._calloc_r = &_calloc_r,
._sbrk_r = &_sbrk_r,
._system_r = (int (*)(struct _reent *, const char*))&_no_sys_func,
._raise_r = (void (*)(struct _reent *))&_no_sys_func,
._abort = &_abort,
._exit_r = &_exit_r,
._getpid_r = &_getpid_r,
._kill_r = &_kill_r,
._times_r = &_times_r,
._gettimeofday_r = _gettimeofday_r,
._open_r = &_open_r,
._close_r = &_close_r,
._lseek_r = (int (*)(struct _reent *r, int, int, int))&_lseek_r,
._fstat_r = &_fstat_r,
._stat_r = &_stat_r,
._write_r = (int (*)(struct _reent *r, int, const void *, int))&_write_r,
._read_r = (int (*)(struct _reent *r, int, void *, int))&_read_r,
._unlink_r = &_unlink_r,
._link_r = (int (*)(struct _reent *r, const char*, const char*))&_no_sys_func,
._rename_r = (int (*)(struct _reent *r, const char*, const char*))&_no_sys_func,
._lock_init = &_lock_init,
._lock_init_recursive = &_lock_init_recursive,
._lock_close = &_lock_close,
._lock_close_recursive = &_lock_close_recursive,
._lock_acquire = &_lock_acquire,
._lock_acquire_recursive = &_lock_acquire_recursive,
._lock_try_acquire = &_lock_try_acquire,
._lock_try_acquire_recursive = &_lock_try_acquire_recursive,
._lock_release = &_lock_release,
._lock_release_recursive = &_lock_release_recursive,
#if CONFIG_NEWLIB_NANO_FORMAT
._printf_float = &_printf_float,
._scanf_float = &_scanf_float,
#else /* CONFIG_NEWLIB_NANO_FORMAT */
._printf_float = NULL,
._scanf_float = NULL,
#endif /* CONFIG_NEWLIB_NANO_FORMAT */
};
void IRAM syscalls_init (void)
{
/* enable the system timer in us (TMG0 is enabled by default) */
TIMER_SYSTEM.config.divider = rtc_clk_apb_freq_get()/MHZ;
TIMER_SYSTEM.config.autoreload = 0;
TIMER_SYSTEM.config.enable = 1;
syscall_table_ptr_pro = &s_stub_table;
syscall_table_ptr_app = &s_stub_table;
_GLOBAL_REENT = &s_reent;
environ = malloc(sizeof(char*));
environ[0] = NULL;
}
uint32_t system_get_time (void)
{
/* latch 64 bit timer value before read */
TIMER_SYSTEM.update = 0;
/* wait until instructions have been finished */
__asm__ volatile ("isync");
return TIMER_SYSTEM.cnt_low;
}
uint32_t system_get_time_ms (void)
{
return system_get_time_64() / USEC_PER_MSEC;
}
uint64_t system_get_time_64 (void)
{
uint64_t ret;
/* latch 64 bit timer value before read */
TIMER_SYSTEM.update = 0;
/* wait until instructions have been finished */
__asm__ volatile ("isync");
/* read the current timer value */
ret = TIMER_SYSTEM.cnt_low;
ret += ((uint64_t)TIMER_SYSTEM.cnt_high) << 32;
return ret;
}
/* alias for compatibility with espressif/wifi_libs */
int64_t esp_timer_get_time(void) __attribute__((alias("system_get_time_64")));
static IRAM void system_wdt_int_handler(void *arg)
{
TIMERG0.int_clr_timers.wdt=1; /* clear interrupt */
system_wdt_feed();
}
void IRAM system_wdt_feed (void)
{
DEBUG("%s\n", __func__);
TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE; /* disable write protection */
TIMERG0.wdt_feed=1; /* reset MWDT */
TIMERG0.wdt_wprotect=0; /* enable write protection */
}
void system_wdt_init (void)
{
/* disable boot watchdogs */
TIMERG0.wdt_config0.flashboot_mod_en = 0;
RTCCNTL.wdt_config0.flashboot_mod_en = 0;
/* enable system watchdog */
TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE; /* disable write protection */
TIMERG0.wdt_config0.stg0 = TIMG_WDT_STG_SEL_INT; /* stage0 timeout: interrupt */
TIMERG0.wdt_config0.stg1 = TIMG_WDT_STG_SEL_RESET_SYSTEM; /* stage1 timeout: sys reset */
TIMERG0.wdt_config0.sys_reset_length = 7; /* sys reset signal length: 3.2 us */
TIMERG0.wdt_config0.cpu_reset_length = 7; /* sys reset signal length: 3.2 us */
TIMERG0.wdt_config0.edge_int_en = 0;
TIMERG0.wdt_config0.level_int_en = 1;
/* MWDT clock = 80 * 12,5 ns = 1 us */
TIMERG0.wdt_config1.clk_prescale = 80;
/* define stage timeouts */
TIMERG0.wdt_config2 = 2 * US_PER_SEC; /* stage 0: 2 s (interrupt) */
TIMERG0.wdt_config3 = 4 * US_PER_SEC; /* stage 1: 4 s (sys reset) */
TIMERG0.wdt_config0.en = 1; /* enable MWDT */
TIMERG0.wdt_feed = 1; /* reset MWDT */
TIMERG0.wdt_wprotect = 0; /* enable write protection */
DEBUG("%s TIMERG0 wdt_config0=%08x wdt_config1=%08x wdt_config2=%08x\n",
__func__, TIMERG0.wdt_config0.val, TIMERG0.wdt_config1.val,
TIMERG0.wdt_config2);
/* route WDT peripheral interrupt source to CPU_INUM_WDT */
intr_matrix_set(PRO_CPU_NUM, ETS_TG0_WDT_LEVEL_INTR_SOURCE, CPU_INUM_WDT);
/* set the interrupt handler and activate the interrupt */
xt_set_interrupt_handler(CPU_INUM_WDT, system_wdt_int_handler, NULL);
xt_ints_on(BIT(CPU_INUM_WDT));
}
void system_wdt_stop (void)
{
xt_ints_off(BIT(CPU_INUM_WDT));
TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE; /* disable write protection */
TIMERG0.wdt_config0.en = 0; /* disable MWDT */
TIMERG0.wdt_feed = 1; /* reset MWDT */
TIMERG0.wdt_wprotect = 0; /* enable write protection */
}
void system_wdt_start (void)
{
TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE; /* disable write protection */
TIMERG0.wdt_config0.en = 1; /* disable MWDT */
TIMERG0.wdt_feed = 1; /* reset MWDT */
TIMERG0.wdt_wprotect = 0; /* enable write protection */
xt_ints_on(BIT(CPU_INUM_WDT));
}
__attribute__((weak)) void
_system_prevent_memset_lto(void *const s, int c, const size_t n)
{
(void) s;
(void) c;
(void) n;
}
void *system_secure_memset(void *s, int c, size_t n)
{
memset(s, c, n);
_system_prevent_memset_lto(s, c, n);
return s;
}