mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2025-01-17 22:32:44 +01:00
659ef97730
The functions `uart_poweron()`, `uart_poweroff()` and `uart_mode()` can share code between the UART (UART without EasyDMA) and UARTE (UART with EasyDMA) implementations, so let's do that.
489 lines
14 KiB
C
489 lines
14 KiB
C
/*
|
|
* Copyright (C) 2014-2017 Freie Universität Berlin
|
|
* 2015 Jan Wagner <mail@jwagner.eu>
|
|
* 2018 Inria
|
|
* 2020 Philipp-Alexander Blum <philipp-blum@jakiku.de>
|
|
*
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU Lesser
|
|
* General Public License v2.1. See the file LICENSE in the top level
|
|
* directory for more details.
|
|
*/
|
|
|
|
/**
|
|
* @ingroup cpu_nrf5x_common
|
|
* @ingroup drivers_periph_uart
|
|
* @{
|
|
*
|
|
* @file
|
|
* @brief Implementation of the peripheral UART interface
|
|
*
|
|
* @author Christian Kühling <kuehling@zedat.fu-berlin.de>
|
|
* @author Timo Ziegler <timo.ziegler@fu-berlin.de>
|
|
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
|
|
* @author Jan Wagner <mail@jwagner.eu>
|
|
* @author Alexandre Abadie <alexandre.abadie@inria.fr>
|
|
* @author Philipp-Alexander Blum <philipp-blum@jakiku.de>
|
|
*
|
|
* @}
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "compiler_hints.h"
|
|
#include "cpu.h"
|
|
#include "periph/gpio.h"
|
|
#include "periph/uart.h"
|
|
|
|
#ifdef UARTE_PRESENT
|
|
# define PSEL_RXD PSEL.RXD
|
|
# define PSEL_TXD PSEL.TXD
|
|
# define PSEL_RTS PSEL.RTS
|
|
# define PSEL_CTS PSEL.CTS
|
|
# define ENABLE_ON UARTE_ENABLE_ENABLE_Enabled
|
|
# define ENABLE_OFF UARTE_ENABLE_ENABLE_Disabled
|
|
# define UART_TYPE NRF_UARTE_Type
|
|
#else
|
|
# define PSEL_RXD PSELRXD
|
|
# define PSEL_TXD PSELTXD
|
|
# define PSEL_RTS PSELRTS
|
|
# define PSEL_CTS PSELCTS
|
|
# define ENABLE_ON UART_ENABLE_ENABLE_Enabled
|
|
# define ENABLE_OFF UART_ENABLE_ENABLE_Disabled
|
|
# define UART_TYPE NRF_UART_Type
|
|
#endif
|
|
|
|
#define RAM_MASK (0x20000000)
|
|
|
|
/**
|
|
* @brief Chunk size used for transferring data from ROM [in bytes]
|
|
*/
|
|
#ifndef NRF_UARTE_CHUNK_SIZE
|
|
#define NRF_UARTE_CHUNK_SIZE (32U)
|
|
#endif
|
|
|
|
/**
|
|
* @brief Allocate memory for the interrupt context
|
|
*/
|
|
static uart_isr_ctx_t isr_ctx[UART_NUMOF];
|
|
#ifdef UARTE_PRESENT
|
|
static uint8_t rx_buf[UART_NUMOF];
|
|
#endif
|
|
|
|
#ifdef MODULE_PERIPH_UART_NONBLOCKING
|
|
|
|
#include "tsrb.h"
|
|
/**
|
|
* @brief Allocate for tx ring buffers
|
|
*/
|
|
static uint8_t tx_buf[UART_NUMOF];
|
|
static tsrb_t uart_tx_rb[UART_NUMOF];
|
|
static uint8_t uart_tx_rb_buf[UART_NUMOF][UART_TXBUF_SIZE];
|
|
#endif
|
|
|
|
/**
|
|
* @brief Shared IRQ Callback for UART on nRF53/nRF9160
|
|
*/
|
|
void uart_isr_handler(void *arg);
|
|
|
|
/* use an enum to count the number of UART ISR macro names defined by the
|
|
* board */
|
|
enum {
|
|
#ifdef UART_0_ISR
|
|
UART_0_ISR_NUM,
|
|
#endif
|
|
#ifdef UART_1_ISR
|
|
UART_1_ISR_NUM,
|
|
#endif
|
|
UART_ISR_NUMOF,
|
|
};
|
|
|
|
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
|
|
{
|
|
/* ensure the ISR names have been defined as needed */
|
|
#if !defined(CPU_NRF53) && !defined(CPU_NRF9160)
|
|
static_assert(UART_NUMOF == UART_ISR_NUMOF, "Define(s) of UART ISR name(s) missing");
|
|
#endif
|
|
if ((unsigned)uart >= UART_NUMOF) {
|
|
return UART_NODEV;
|
|
}
|
|
|
|
UART_TYPE *dev = uart_config[uart].dev;
|
|
|
|
/* remember callback addresses and argument */
|
|
isr_ctx[uart].rx_cb = rx_cb;
|
|
isr_ctx[uart].arg = arg;
|
|
|
|
#ifndef UARTE_PRESENT
|
|
/* only the legacy non-EasyDMA UART needs to be powered on explicitly */
|
|
dev->POWER = 1;
|
|
#endif
|
|
|
|
/* reset configuration registers */
|
|
dev->CONFIG = 0;
|
|
|
|
/* configure RX pin */
|
|
if (rx_cb) {
|
|
gpio_init(uart_config[uart].rx_pin, GPIO_IN);
|
|
dev->PSEL_RXD = uart_config[uart].rx_pin;
|
|
}
|
|
|
|
/* configure TX pin */
|
|
gpio_init(uart_config[uart].tx_pin, GPIO_OUT);
|
|
dev->PSEL_TXD = uart_config[uart].tx_pin;
|
|
|
|
/* enable HW-flow control if defined */
|
|
#ifdef MODULE_PERIPH_UART_HW_FC
|
|
/* set pin mode for RTS and CTS pins */
|
|
if (uart_config[uart].rts_pin != GPIO_UNDEF && uart_config[uart].cts_pin != GPIO_UNDEF) {
|
|
gpio_init(uart_config[uart].rts_pin, GPIO_OUT);
|
|
gpio_init(uart_config[uart].cts_pin, GPIO_IN);
|
|
/* configure RTS and CTS pins to use */
|
|
dev->PSEL_RTS = uart_config[uart].rts_pin;
|
|
dev->PSEL_CTS = uart_config[uart].cts_pin;
|
|
dev->CONFIG |= UART_CONFIG_HWFC_Msk; /* enable HW flow control */
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
dev->PSEL_RTS = 0xffffffff; /* pin disconnected */
|
|
dev->PSEL_CTS = 0xffffffff; /* pin disconnected */
|
|
}
|
|
|
|
/* select baudrate */
|
|
switch (baudrate) {
|
|
case 1200:
|
|
dev->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud1200;
|
|
break;
|
|
case 2400:
|
|
dev->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud2400;
|
|
break;
|
|
case 4800:
|
|
dev->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud4800;
|
|
break;
|
|
case 9600:
|
|
dev->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud9600;
|
|
break;
|
|
case 14400:
|
|
dev->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud14400;
|
|
break;
|
|
case 19200:
|
|
dev->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud19200;
|
|
break;
|
|
case 28800:
|
|
dev->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud28800;
|
|
break;
|
|
case 38400:
|
|
dev->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud38400;
|
|
break;
|
|
case 57600:
|
|
dev->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud57600;
|
|
break;
|
|
case 76800:
|
|
dev->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud76800;
|
|
break;
|
|
case 115200:
|
|
dev->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud115200;
|
|
break;
|
|
case 230400:
|
|
dev->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud230400;
|
|
break;
|
|
case 250000:
|
|
dev->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud250000;
|
|
break;
|
|
case 460800:
|
|
dev->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud460800;
|
|
break;
|
|
case 921600:
|
|
dev->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud921600;
|
|
break;
|
|
case 1000000:
|
|
dev->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud1M;
|
|
break;
|
|
default:
|
|
return UART_NOBAUD;
|
|
}
|
|
|
|
/* enable the UART device */
|
|
dev->ENABLE = ENABLE_ON;
|
|
|
|
#ifdef MODULE_PERIPH_UART_NONBLOCKING
|
|
/* set up the TX buffer */
|
|
tsrb_init(&uart_tx_rb[uart], uart_tx_rb_buf[uart], UART_TXBUF_SIZE);
|
|
#endif
|
|
|
|
if (rx_cb) {
|
|
#ifdef UARTE_PRESENT
|
|
dev->RXD.MAXCNT = 1;
|
|
dev->RXD.PTR = (uint32_t)&rx_buf[uart];
|
|
dev->INTENSET = UARTE_INTENSET_ENDRX_Msk;
|
|
dev->SHORTS |= UARTE_SHORTS_ENDRX_STARTRX_Msk;
|
|
dev->TASKS_STARTRX = 1;
|
|
#else
|
|
dev->INTENSET = UART_INTENSET_RXDRDY_Msk;
|
|
dev->TASKS_STARTRX = 1;
|
|
#endif
|
|
}
|
|
|
|
if (rx_cb || IS_USED(MODULE_PERIPH_UART_NONBLOCKING)) {
|
|
#if defined(CPU_NRF53) || defined(CPU_NRF9160)
|
|
shared_irq_register_uart(dev, uart_isr_handler, (void *)(uintptr_t)uart);
|
|
#else
|
|
NVIC_EnableIRQ(uart_config[uart].irqn);
|
|
#endif
|
|
}
|
|
return UART_OK;
|
|
}
|
|
|
|
void uart_poweron(uart_t uart)
|
|
{
|
|
assume((unsigned)uart < UART_NUMOF);
|
|
|
|
if (isr_ctx[uart].rx_cb) {
|
|
uart_config[uart].dev->TASKS_STARTRX = 1;
|
|
}
|
|
}
|
|
|
|
void uart_poweroff(uart_t uart)
|
|
{
|
|
assume((unsigned)uart < UART_NUMOF);
|
|
|
|
uart_config[uart].dev->TASKS_STOPRX = 1;
|
|
}
|
|
|
|
/* Unify macro names across nRF51 (UART) and nRF52 and newer (UARTE) */
|
|
#if defined(UARTE_CONFIG_HWFC_Msk)
|
|
# define CONFIG_HWFC_Msk UARTE_CONFIG_HWFC_Msk
|
|
#elif defined(UART_CONFIG_HWFC_Msk)
|
|
# define CONFIG_HWFC_Msk UART_CONFIG_HWFC_Msk
|
|
#endif
|
|
|
|
#if defined(UARTE_CONFIG_PARITY_Msk)
|
|
# define CONFIG_PARITY_Msk UARTE_CONFIG_PARITY_Msk
|
|
#elif defined(UART_CONFIG_PARITY_Msk)
|
|
# define CONFIG_PARITY_Msk UART_CONFIG_PARITY_Msk
|
|
#endif
|
|
|
|
#if defined(UARTE_CONFIG_STOP_Msk)
|
|
# define CONFIG_STOP_Msk UARTE_CONFIG_STOP_Msk
|
|
#elif defined(UART_CONFIG_STOP_Msk)
|
|
# define CONFIG_STOP_Msk UART_CONFIG_STOP_Msk
|
|
#endif
|
|
|
|
int uart_mode(uart_t uart, uart_data_bits_t data_bits, uart_parity_t parity,
|
|
uart_stop_bits_t stop_bits)
|
|
{
|
|
assume((unsigned)uart < UART_NUMOF);
|
|
/* Not all nRF5x MCUs support 2 stop bits, but the vendor header files
|
|
* reflect the feature set. */
|
|
switch (stop_bits) {
|
|
case UART_STOP_BITS_1:
|
|
#ifdef CONFIG_STOP_Msk
|
|
case UART_STOP_BITS_2:
|
|
#endif
|
|
break;
|
|
default:
|
|
return UART_NOMODE;
|
|
}
|
|
|
|
if (data_bits != UART_DATA_BITS_8) {
|
|
return UART_NOMODE;
|
|
}
|
|
|
|
if ((parity != UART_PARITY_NONE) && (parity != UART_PARITY_EVEN)) {
|
|
return UART_NOMODE;
|
|
}
|
|
|
|
/* Do not modify hardware flow control */
|
|
uint32_t conf = uart_config[uart].dev->CONFIG & CONFIG_HWFC_Msk;
|
|
|
|
#ifdef CONFIG_STOP_Msk
|
|
if (stop_bits == UART_STOP_BITS_2) {
|
|
conf |= UARTE_CONFIG_STOP_Msk;
|
|
}
|
|
#endif
|
|
|
|
if (parity == UART_PARITY_EVEN) {
|
|
conf |= CONFIG_PARITY_Msk;
|
|
}
|
|
|
|
uart_config[uart].dev->CONFIG = conf;
|
|
return UART_OK;
|
|
}
|
|
|
|
/* UART with EasyDMA */
|
|
#ifdef UARTE_PRESENT
|
|
static void _write_buf(uart_t uart, const uint8_t *data, size_t len)
|
|
{
|
|
uart_config[uart].dev->EVENTS_ENDTX = 0;
|
|
if (IS_USED(MODULE_PERIPH_UART_NONBLOCKING)) {
|
|
uart_config[uart].dev->INTENSET = UARTE_INTENSET_ENDTX_Msk;
|
|
}
|
|
/* set data to transfer to DMA TX pointer */
|
|
uart_config[uart].dev->TXD.PTR = (uint32_t)data;
|
|
uart_config[uart].dev->TXD.MAXCNT = len;
|
|
/* start transmission */
|
|
uart_config[uart].dev->TASKS_STARTTX = 1;
|
|
/* wait for the end of transmission */
|
|
if (!IS_USED(MODULE_PERIPH_UART_NONBLOCKING)) {
|
|
while (uart_config[uart].dev->EVENTS_ENDTX == 0) {}
|
|
uart_config[uart].dev->TASKS_STOPTX = 1;
|
|
}
|
|
}
|
|
|
|
void uart_write(uart_t uart, const uint8_t *data, size_t len)
|
|
{
|
|
assume((unsigned)uart < UART_NUMOF);
|
|
#ifdef MODULE_PERIPH_UART_NONBLOCKING
|
|
for (size_t i = 0; i < len; i++) {
|
|
/* in IRQ or interrupts disabled */
|
|
if (irq_is_in() || __get_PRIMASK()) {
|
|
if (tsrb_full(&uart_tx_rb[uart])) {
|
|
/* wait for end of ongoing transmission */
|
|
if (uart_config[uart].dev->EVENTS_TXSTARTED) {
|
|
while (uart_config[uart].dev->EVENTS_ENDTX == 0) {}
|
|
uart_config[uart].dev->EVENTS_TXSTARTED = 0;
|
|
}
|
|
/* free one spot in buffer */
|
|
tx_buf[uart] = tsrb_get_one(&uart_tx_rb[uart]);
|
|
_write_buf(uart, &tx_buf[uart], 1);
|
|
}
|
|
tsrb_add_one(&uart_tx_rb[uart], data[i]);
|
|
}
|
|
else {
|
|
/* if no transmission is ongoing and ring buffer is full
|
|
free up a spot in the buffer by sending one byte */
|
|
if (!uart_config[uart].dev->EVENTS_TXSTARTED && tsrb_full(&uart_tx_rb[uart])) {
|
|
tx_buf[uart] = tsrb_get_one(&uart_tx_rb[uart]);
|
|
_write_buf(uart, &tx_buf[uart], 1);
|
|
}
|
|
while (tsrb_add_one(&uart_tx_rb[uart], data[i]) < 0) {}
|
|
}
|
|
}
|
|
/* if no transmission is ongoing bootstrap the transmission process
|
|
by setting a single byte to be written */
|
|
if (!uart_config[uart].dev->EVENTS_TXSTARTED) {
|
|
if (!tsrb_empty(&uart_tx_rb[uart])) {
|
|
tx_buf[uart] = tsrb_get_one(&uart_tx_rb[uart]);
|
|
_write_buf(uart, &tx_buf[uart], 1);
|
|
}
|
|
}
|
|
#else
|
|
/* EasyDMA can only transfer data from RAM (see ref. manual, sec. 6.34.1).
|
|
* So if the given `data` buffer resides in ROM, we need to copy it to RAM
|
|
* before being able to transfer it. To make sure the stack does not
|
|
* overflow, we do this chunk-wise. */
|
|
if (!((uint32_t)data & RAM_MASK)) {
|
|
size_t pos = 0;
|
|
while (pos < len) {
|
|
uint8_t tmp[NRF_UARTE_CHUNK_SIZE];
|
|
size_t off = len - pos;
|
|
off = (off > NRF_UARTE_CHUNK_SIZE) ? NRF_UARTE_CHUNK_SIZE : off;
|
|
memcpy(tmp, data + pos, off);
|
|
_write_buf(uart, tmp, off);
|
|
pos += off;
|
|
}
|
|
}
|
|
else {
|
|
_write_buf(uart, data, len);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void irq_handler(uart_t uart)
|
|
{
|
|
if (uart_config[uart].dev->EVENTS_ENDRX) {
|
|
uart_config[uart].dev->EVENTS_ENDRX = 0;
|
|
|
|
/* make sure we actually received new data */
|
|
if (uart_config[uart].dev->RXD.AMOUNT != 0) {
|
|
/* Process received byte */
|
|
isr_ctx[uart].rx_cb(isr_ctx[uart].arg, rx_buf[uart]);
|
|
}
|
|
}
|
|
|
|
#ifdef MODULE_PERIPH_UART_NONBLOCKING
|
|
if (uart_config[uart].dev->EVENTS_ENDTX) {
|
|
/* reset flags and idsable ISR on EVENTS_ENDTX */
|
|
uart_config[uart].dev->EVENTS_ENDTX = 0;
|
|
uart_config[uart].dev->EVENTS_TXSTARTED = 0;
|
|
uart_config[uart].dev->INTENCLR = UARTE_INTENSET_ENDTX_Msk;
|
|
if (tsrb_empty(&uart_tx_rb[uart])) {
|
|
uart_config[uart].dev->TASKS_STOPTX = 1;
|
|
} else {
|
|
tx_buf[uart] = tsrb_get_one(&uart_tx_rb[uart]);
|
|
_write_buf(uart, &tx_buf[uart], 1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
cortexm_isr_end();
|
|
}
|
|
|
|
#else /* UART without EasyDMA*/
|
|
|
|
void uart_write(uart_t uart, const uint8_t *data, size_t len)
|
|
{
|
|
assume((unsigned)uart < UART_NUMOF);
|
|
|
|
uart_config[uart].dev->TASKS_STARTTX = 1;
|
|
|
|
for (size_t i = 0; i < len; i++) {
|
|
/* This section of the function is not thread safe:
|
|
- another thread may mess up with the uart at the same time.
|
|
In order to avoid an infinite loop in the interrupted thread,
|
|
the TXRDY flag must be cleared before writing the data to be
|
|
sent and not after. This way, the higher priority thread will
|
|
exit this function with the TXRDY flag set, then the interrupted
|
|
thread may have not transmitted his data but will still exit the
|
|
while loop.
|
|
*/
|
|
/* reset ready flag */
|
|
uart_config[uart].dev->EVENTS_TXDRDY = 0;
|
|
/* write data into transmit register */
|
|
uart_config[uart].dev->TXD = data[i];
|
|
/* wait for any transmission to be done */
|
|
while (uart_config[uart].dev->EVENTS_TXDRDY == 0) {}
|
|
}
|
|
|
|
uart_config[uart].dev->TASKS_STOPTX = 1;
|
|
}
|
|
|
|
static void irq_handler(uart_t uart)
|
|
{
|
|
if (uart_config[uart].dev->EVENTS_RXDRDY == 1) {
|
|
uart_config[uart].dev->EVENTS_RXDRDY = 0;
|
|
uint8_t byte = (uint8_t)(uart_config[uart].dev->RXD & 0xff);
|
|
isr_ctx[uart].rx_cb(isr_ctx[uart].arg, byte);
|
|
}
|
|
|
|
cortexm_isr_end();
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(CPU_NRF53) || defined(CPU_NRF9160)
|
|
void uart_isr_handler(void *arg)
|
|
{
|
|
uart_t uart = (uart_t)(uintptr_t)arg;
|
|
|
|
irq_handler(uart);
|
|
}
|
|
#else
|
|
#ifdef UART_0_ISR
|
|
void UART_0_ISR(void)
|
|
{
|
|
irq_handler(UART_DEV(0));
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_1_ISR
|
|
void UART_1_ISR(void)
|
|
{
|
|
irq_handler(UART_DEV(1));
|
|
}
|
|
#endif
|
|
|
|
#endif /* def CPU_NRF53 || CPU_NRF9160 */
|