1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-17 22:32:44 +01:00
RIOT/cpu/nrf5x_common/periph/i2c_nrf52_nrf9160.c

411 lines
12 KiB
C

/*
* Copyright (C) 2017 HAW Hamburg
* 2018 Freie Universität Berlin
* 2018 Mesotic SAS
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_nrf5x_common
* @{
*
* @file
* @brief Low-level I2C (TWI) peripheral driver implementation
*
* @author Dimitri Nahm <dimitri.nahm@haw-hamburg.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Dylan Laduranty <dylan.laduranty@mesotic.com>
*
* As this implementation is based on the nRF5x TWIM peripheral, it can not
* issue a read following a read (or a write following a write) without
* creating a (repeated) start condition:
* <https://devzone.nordicsemi.com/f/nordic-q-a/66615/nrf52840-twim-how-to-write-multiple-buffers-without-repeated-start-condition>,
* backed also by later experiments discussed in the [Rust embedded
* channel](https://matrix.to/#/!BHcierreUuwCMxVqOf:matrix.org/$JwNejRaeJx_tvqKgS88GenDG8ZNHrkTW09896dIehQ8?via=matrix.org&via=catircservices.org&via=tchncs.de).
* Due to this shortcoming in the hardware, any operations with I2C_NOSTART
* fail.
*
* Relatedly, the successful termination of a read or write can not be detected
* by an interrupt (only the eventual STOPPED condition after the event
* short-circuiting of LASTTX/LASTRX to STOP triggers one). There are LASTTX /
* LASTRX interrupts, but while the LASTTX is sensible enough (the last byte
* has been read, is being written, the caller may now repurpose the buffers),
* the LASTRX interrupt fires at the start of the last byte reading, and the
* user can not reliably know when the last byte was written (at least not
* easily). Therefore, reads with I2C_NOSTOP are not supported.
*
* In combination, these still allow the typical I2C operations: A single
* write, and a write (selecting a register) followed by a read, as well as
* stand-alone reads. More complex patterns are not supported; in particular,
* scatter-gather reads or writes are not possible.
*
* @}
*/
#include <assert.h>
#include <string.h>
#include <errno.h>
#include "cpu.h"
#include "mutex.h"
#include "assert.h"
#include "periph/i2c.h"
#include "periph/gpio.h"
#include "byteorder.h"
#define ENABLE_DEBUG 0
#include "debug.h"
/**
* @brief If any of the 8 lower bits are set, the speed value is invalid
*/
#define INVALID_SPEED_MASK (0xff)
/**
* @brief Allocate a tx buffer
*/
static uint8_t tx_buf[256];
/**
* @brief Mutex for locking the TX buffer
*/
static mutex_t buffer_lock;
/**
* @brief Initialized dev locks (we have a maximum of two devices...)
*/
static mutex_t locks[I2C_NUMOF];
/**
* @brief array with a busy mutex for each I2C device, used to block the
* thread until the transfer is done
*/
static mutex_t busy[I2C_NUMOF];
void i2c_isr_handler(void *arg);
static inline NRF_TWIM_Type *bus(i2c_t dev)
{
return i2c_config[dev].dev;
}
/**
* @brief Like i2c_write_bytes, but with the constraint (created by the
* hardware) that data is in RAM
*/
static int direct_i2c_write_bytes(i2c_t dev, uint16_t addr, const void *data,
size_t len,
uint8_t flags);
/**
* Block until the interrupt described by inten_success_flag or
* TWIM_INTEN_ERROR_Msk fires.
*
* Allowed values for inten_success_flag are
* * TWIM_INTEN_STOPPED_Msk (when a stop condition is to be set and the short
* circuit will pull TWIM into the stopped condition)
* * TWIM_INTEN_LASTTX_Msk (when sending without a stop condition)
*
* (TWIM_INTEN_LASTRX_Msk makes no sense here because that interrupt fires
* before the data is ready).
*
* Any addition needs to be added to the mask in i2c_isr_handler.
*/
static int finish(i2c_t dev, int inten_success_flag)
{
DEBUG("[i2c] waiting for success (STOPPED/LASTTX) or ERROR event\n");
/* Unmask interrupts */
bus(dev)->INTENSET = inten_success_flag | TWIM_INTEN_ERROR_Msk;
mutex_lock(&busy[dev]);
if ((bus(dev)->EVENTS_STOPPED)) {
bus(dev)->EVENTS_STOPPED = 0;
DEBUG("[i2c] finish: stop event occurred\n");
}
if (inten_success_flag & TWIM_INTEN_LASTTX_Msk) {
/* The interrupt is raised already when the last TX is started, but we
* have to wait until it was actually transmitted lest the transmission
* would be suppressed immediately by the next following write --
* careful here: enabling DEBUG introduces enough latency that the
* issue doesn't show up any more. */
while (bus(dev)->TXD.AMOUNT != bus(dev)->TXD.MAXCNT &&
!bus(dev)->EVENTS_ERROR) {}
}
if (bus(dev)->EVENTS_ERROR) {
bus(dev)->EVENTS_ERROR = 0;
if (bus(dev)->ERRORSRC & TWIM_ERRORSRC_ANACK_Msk) {
bus(dev)->ERRORSRC = TWIM_ERRORSRC_ANACK_Msk;
DEBUG("[i2c] check_error: NACK on address byte\n");
return -ENXIO;
}
if (bus(dev)->ERRORSRC & TWIM_ERRORSRC_DNACK_Msk) {
bus(dev)->ERRORSRC = TWIM_ERRORSRC_DNACK_Msk;
DEBUG("[i2c] check_error: NACK on data byte\n");
return -EIO;
}
}
return 0;
}
static void _init_pins(i2c_t dev)
{
gpio_init(i2c_config[dev].scl, GPIO_IN_OD_PU);
gpio_init(i2c_config[dev].sda, GPIO_IN_OD_PU);
}
/* Beware: This needs to be kept in sync with the SPI version of this.
* Specifically, when registers are configured that are valid to the peripheral
* in both SPI and I2C mode, the register needs to be configured in both the I2C
* and the SPI variant of _setup_shared_peripheral() to avoid from parameters
* leaking from one bus into the other */
static void _setup_shared_peripheral(i2c_t dev)
{
bus(dev)->PSEL.SCL = i2c_config[dev].scl;
bus(dev)->PSEL.SDA = i2c_config[dev].sda;
bus(dev)->FREQUENCY = i2c_config[dev].speed;
}
void i2c_init(i2c_t dev)
{
assert(dev < I2C_NUMOF);
/* Initialize mutex */
mutex_init(&busy[dev]);
mutex_lock(&busy[dev]);
/* disable device during initialization, will be enabled when acquire is
* called */
bus(dev)->ENABLE = TWIM_ENABLE_ENABLE_Disabled;
/* configure pins */
_init_pins(dev);
/* configure shared periphal speed */
_setup_shared_peripheral(dev);
shared_irq_register_i2c(bus(dev), i2c_isr_handler, (void *)(uintptr_t)dev);
/* We expect that the device was being acquired before
* the i2c_init_master() function is called, so it should be enabled when
* exiting this function. */
bus(dev)->ENABLE = TWIM_ENABLE_ENABLE_Enabled;
}
#ifdef MODULE_PERIPH_I2C_RECONFIGURE
void i2c_init_pins(i2c_t dev)
{
assert(dev < I2C_NUMOF);
_init_pins(dev);
bus(dev)->ENABLE = TWIM_ENABLE_ENABLE_Enabled;
mutex_unlock(&locks[dev]);
}
void i2c_deinit_pins(i2c_t dev)
{
assert(dev < I2C_NUMOF);
mutex_lock(&locks[dev]);
bus(dev)->ENABLE = TWIM_ENABLE_ENABLE_Disabled;
}
#endif /* MODULE_PERIPH_I2C_RECONFIGURE */
void i2c_acquire(i2c_t dev)
{
assert(dev < I2C_NUMOF);
if (IS_USED(MODULE_PERIPH_I2C_RECONFIGURE)) {
mutex_lock(&locks[dev]);
}
nrf5x_i2c_acquire(bus(dev), i2c_isr_handler, (void *)(uintptr_t)dev);
_setup_shared_peripheral(dev);
bus(dev)->ENABLE = TWIM_ENABLE_ENABLE_Enabled;
DEBUG("[i2c] acquired dev %i\n", (int)dev);
}
void i2c_release(i2c_t dev)
{
assert(dev < I2C_NUMOF);
bus(dev)->ENABLE = TWIM_ENABLE_ENABLE_Disabled;
if (IS_USED(MODULE_PERIPH_I2C_RECONFIGURE)) {
mutex_unlock(&locks[dev]);
}
nrf5x_i2c_release(bus(dev));
DEBUG("[i2c] released dev %i\n", (int)dev);
}
int i2c_write_regs(i2c_t dev, uint16_t addr, uint16_t reg,
const void *data, size_t len, uint8_t flags)
{
assert((dev < I2C_NUMOF) && data && (len > 0) && (len < 253));
if (flags & (I2C_NOSTART | I2C_ADDR10)) {
return -EOPNOTSUPP;
}
/* the nrf52's TWI device does not support to do two consecutive transfers
* without a repeated start condition in between. So we have to put all data
* to be transferred into a buffer (tx_buf).
* */
uint8_t reg_addr_len; /* Length in bytes of the register address */
/* Lock tx_buf */
mutex_lock(&buffer_lock);
if (flags & (I2C_REG16)) {
reg_addr_len = 2;
/* Prepare the 16-bit register transfer */
tx_buf[0] = reg >> 8; /* AddrH in the first byte */
tx_buf[1] = reg & 0xFF; /* AddrL in the second byte */
}
else{
reg_addr_len = 1;
tx_buf[0] = reg;
}
memcpy(&tx_buf[reg_addr_len], data, len);
int ret = direct_i2c_write_bytes(dev, addr, tx_buf, reg_addr_len + len, flags);
/* Release tx_buf */
mutex_unlock(&buffer_lock);
return ret;
}
int i2c_read_bytes(i2c_t dev, uint16_t addr, void *data, size_t len,
uint8_t flags)
{
assert((dev < I2C_NUMOF) && data && (len > 0) && (len < 256));
if (flags & (I2C_NOSTART | I2C_ADDR10 | I2C_NOSTOP)) {
return -EOPNOTSUPP;
}
DEBUG("[i2c] read_bytes: %i bytes from addr 0x%02x\n", (int)len, (int)addr);
bus(dev)->ADDRESS = addr;
bus(dev)->RXD.PTR = (uint32_t)data;
bus(dev)->RXD.MAXCNT = (uint8_t)len;
int inten_success_flag;
bus(dev)->SHORTS = TWIM_SHORTS_LASTRX_STOP_Msk;
inten_success_flag = TWIM_INTEN_STOPPED_Msk;
/* Start transmission */
bus(dev)->TASKS_STARTRX = 1;
return finish(dev, inten_success_flag);
}
int i2c_read_regs(i2c_t dev, uint16_t addr, uint16_t reg,
void *data, size_t len, uint8_t flags)
{
assert((dev < I2C_NUMOF) && data && (len > 0) && (len < 256));
if (flags & (I2C_NOSTART | I2C_ADDR10 | I2C_NOSTOP)) {
return -EOPNOTSUPP;
}
DEBUG("[i2c] read_regs: %i byte(s) from reg 0x%02x at addr 0x%02x\n",
(int)len, (int)reg, (int)addr);
/* Prepare transfer */
bus(dev)->ADDRESS = addr;
if (flags & (I2C_REG16)) {
/* Register endianness for 16 bit */
reg = htons(reg);
bus(dev)->TXD.MAXCNT = 2;
}
else {
bus(dev)->TXD.MAXCNT = 1;
}
bus(dev)->TXD.PTR = (uint32_t)&reg;
bus(dev)->RXD.PTR = (uint32_t)data;
bus(dev)->RXD.MAXCNT = (uint8_t)len;
int inten_success_flag = TWIM_INTEN_STOPPED_Msk;
bus(dev)->SHORTS = TWIM_SHORTS_LASTTX_STARTRX_Msk | TWIM_SHORTS_LASTRX_STOP_Msk;
/* Start transfer */
bus(dev)->TASKS_STARTTX = 1;
return finish(dev, inten_success_flag);
}
int i2c_write_bytes(i2c_t dev, uint16_t addr, const void *data, size_t len,
uint8_t flags)
{
if ((unsigned int)data >= CPU_RAM_BASE && (unsigned int)data < CPU_RAM_BASE + CPU_RAM_SIZE) {
return direct_i2c_write_bytes(dev, addr, data, len, flags);
}
/* These are critical for the memcpy; direct_i2c_write_bytes makes some
* more */
assert((len > 0) && (len < 256));
/* Lock tx_buf */
mutex_lock(&buffer_lock);
memcpy(tx_buf, data, len);
int result = direct_i2c_write_bytes(dev, addr, tx_buf, len, flags);
/* Release tx_buf */
mutex_unlock(&buffer_lock);
return result;
}
int direct_i2c_write_bytes(i2c_t dev, uint16_t addr, const void *data,
size_t len,
uint8_t flags)
{
assert((dev < I2C_NUMOF) && data && (len > 0) && (len < 256));
if (flags & (I2C_NOSTART | I2C_ADDR10)) {
return -EOPNOTSUPP;
}
DEBUG("[i2c] write_bytes: %i byte(s) to addr 0x%02x\n", (int)len, (int)addr);
bus(dev)->ADDRESS = addr;
bus(dev)->TXD.PTR = (uint32_t)data;
bus(dev)->TXD.MAXCNT = (uint8_t)len;
int inten_success_flag;
if (!(flags & I2C_NOSTOP)) {
bus(dev)->SHORTS = TWIM_SHORTS_LASTTX_STOP_Msk;
inten_success_flag = TWIM_INTEN_STOPPED_Msk;
}
else {
bus(dev)->SHORTS = 0;
inten_success_flag = TWIM_INTEN_LASTTX_Msk;
}
bus(dev)->TASKS_STARTTX = 1;
return finish(dev, inten_success_flag);
}
void i2c_isr_handler(void *arg)
{
i2c_t dev = (i2c_t)(uintptr_t)arg;
/* Mask interrupts to ensure that they only trigger once */
bus(dev)->INTENCLR = TWIM_INTEN_STOPPED_Msk | TWIM_INTEN_ERROR_Msk | TWIM_INTEN_LASTTX_Msk;
mutex_unlock(&busy[dev]);
}