mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2025-01-17 22:32:44 +01:00
411 lines
12 KiB
C
411 lines
12 KiB
C
/*
|
|
* Copyright (C) 2017 HAW Hamburg
|
|
* 2018 Freie Universität Berlin
|
|
* 2018 Mesotic SAS
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU Lesser
|
|
* General Public License v2.1. See the file LICENSE in the top level
|
|
* directory for more details.
|
|
*/
|
|
|
|
/**
|
|
* @ingroup cpu_nrf5x_common
|
|
* @{
|
|
*
|
|
* @file
|
|
* @brief Low-level I2C (TWI) peripheral driver implementation
|
|
*
|
|
* @author Dimitri Nahm <dimitri.nahm@haw-hamburg.de>
|
|
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
|
|
* @author Dylan Laduranty <dylan.laduranty@mesotic.com>
|
|
*
|
|
* As this implementation is based on the nRF5x TWIM peripheral, it can not
|
|
* issue a read following a read (or a write following a write) without
|
|
* creating a (repeated) start condition:
|
|
* <https://devzone.nordicsemi.com/f/nordic-q-a/66615/nrf52840-twim-how-to-write-multiple-buffers-without-repeated-start-condition>,
|
|
* backed also by later experiments discussed in the [Rust embedded
|
|
* channel](https://matrix.to/#/!BHcierreUuwCMxVqOf:matrix.org/$JwNejRaeJx_tvqKgS88GenDG8ZNHrkTW09896dIehQ8?via=matrix.org&via=catircservices.org&via=tchncs.de).
|
|
* Due to this shortcoming in the hardware, any operations with I2C_NOSTART
|
|
* fail.
|
|
*
|
|
* Relatedly, the successful termination of a read or write can not be detected
|
|
* by an interrupt (only the eventual STOPPED condition after the event
|
|
* short-circuiting of LASTTX/LASTRX to STOP triggers one). There are LASTTX /
|
|
* LASTRX interrupts, but while the LASTTX is sensible enough (the last byte
|
|
* has been read, is being written, the caller may now repurpose the buffers),
|
|
* the LASTRX interrupt fires at the start of the last byte reading, and the
|
|
* user can not reliably know when the last byte was written (at least not
|
|
* easily). Therefore, reads with I2C_NOSTOP are not supported.
|
|
*
|
|
* In combination, these still allow the typical I2C operations: A single
|
|
* write, and a write (selecting a register) followed by a read, as well as
|
|
* stand-alone reads. More complex patterns are not supported; in particular,
|
|
* scatter-gather reads or writes are not possible.
|
|
*
|
|
* @}
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
|
|
#include "cpu.h"
|
|
#include "mutex.h"
|
|
#include "assert.h"
|
|
#include "periph/i2c.h"
|
|
#include "periph/gpio.h"
|
|
#include "byteorder.h"
|
|
|
|
#define ENABLE_DEBUG 0
|
|
#include "debug.h"
|
|
|
|
/**
|
|
* @brief If any of the 8 lower bits are set, the speed value is invalid
|
|
*/
|
|
#define INVALID_SPEED_MASK (0xff)
|
|
|
|
/**
|
|
* @brief Allocate a tx buffer
|
|
*/
|
|
static uint8_t tx_buf[256];
|
|
|
|
/**
|
|
* @brief Mutex for locking the TX buffer
|
|
*/
|
|
static mutex_t buffer_lock;
|
|
|
|
/**
|
|
* @brief Initialized dev locks (we have a maximum of two devices...)
|
|
*/
|
|
static mutex_t locks[I2C_NUMOF];
|
|
|
|
/**
|
|
* @brief array with a busy mutex for each I2C device, used to block the
|
|
* thread until the transfer is done
|
|
*/
|
|
static mutex_t busy[I2C_NUMOF];
|
|
|
|
void i2c_isr_handler(void *arg);
|
|
|
|
static inline NRF_TWIM_Type *bus(i2c_t dev)
|
|
{
|
|
return i2c_config[dev].dev;
|
|
}
|
|
|
|
/**
|
|
* @brief Like i2c_write_bytes, but with the constraint (created by the
|
|
* hardware) that data is in RAM
|
|
*/
|
|
static int direct_i2c_write_bytes(i2c_t dev, uint16_t addr, const void *data,
|
|
size_t len,
|
|
uint8_t flags);
|
|
|
|
/**
|
|
* Block until the interrupt described by inten_success_flag or
|
|
* TWIM_INTEN_ERROR_Msk fires.
|
|
*
|
|
* Allowed values for inten_success_flag are
|
|
* * TWIM_INTEN_STOPPED_Msk (when a stop condition is to be set and the short
|
|
* circuit will pull TWIM into the stopped condition)
|
|
* * TWIM_INTEN_LASTTX_Msk (when sending without a stop condition)
|
|
*
|
|
* (TWIM_INTEN_LASTRX_Msk makes no sense here because that interrupt fires
|
|
* before the data is ready).
|
|
*
|
|
* Any addition needs to be added to the mask in i2c_isr_handler.
|
|
*/
|
|
static int finish(i2c_t dev, int inten_success_flag)
|
|
{
|
|
DEBUG("[i2c] waiting for success (STOPPED/LASTTX) or ERROR event\n");
|
|
/* Unmask interrupts */
|
|
bus(dev)->INTENSET = inten_success_flag | TWIM_INTEN_ERROR_Msk;
|
|
mutex_lock(&busy[dev]);
|
|
|
|
if ((bus(dev)->EVENTS_STOPPED)) {
|
|
bus(dev)->EVENTS_STOPPED = 0;
|
|
DEBUG("[i2c] finish: stop event occurred\n");
|
|
}
|
|
|
|
if (inten_success_flag & TWIM_INTEN_LASTTX_Msk) {
|
|
/* The interrupt is raised already when the last TX is started, but we
|
|
* have to wait until it was actually transmitted lest the transmission
|
|
* would be suppressed immediately by the next following write --
|
|
* careful here: enabling DEBUG introduces enough latency that the
|
|
* issue doesn't show up any more. */
|
|
while (bus(dev)->TXD.AMOUNT != bus(dev)->TXD.MAXCNT &&
|
|
!bus(dev)->EVENTS_ERROR) {}
|
|
}
|
|
|
|
if (bus(dev)->EVENTS_ERROR) {
|
|
bus(dev)->EVENTS_ERROR = 0;
|
|
if (bus(dev)->ERRORSRC & TWIM_ERRORSRC_ANACK_Msk) {
|
|
bus(dev)->ERRORSRC = TWIM_ERRORSRC_ANACK_Msk;
|
|
DEBUG("[i2c] check_error: NACK on address byte\n");
|
|
return -ENXIO;
|
|
}
|
|
if (bus(dev)->ERRORSRC & TWIM_ERRORSRC_DNACK_Msk) {
|
|
bus(dev)->ERRORSRC = TWIM_ERRORSRC_DNACK_Msk;
|
|
DEBUG("[i2c] check_error: NACK on data byte\n");
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void _init_pins(i2c_t dev)
|
|
{
|
|
gpio_init(i2c_config[dev].scl, GPIO_IN_OD_PU);
|
|
gpio_init(i2c_config[dev].sda, GPIO_IN_OD_PU);
|
|
}
|
|
|
|
/* Beware: This needs to be kept in sync with the SPI version of this.
|
|
* Specifically, when registers are configured that are valid to the peripheral
|
|
* in both SPI and I2C mode, the register needs to be configured in both the I2C
|
|
* and the SPI variant of _setup_shared_peripheral() to avoid from parameters
|
|
* leaking from one bus into the other */
|
|
static void _setup_shared_peripheral(i2c_t dev)
|
|
{
|
|
bus(dev)->PSEL.SCL = i2c_config[dev].scl;
|
|
bus(dev)->PSEL.SDA = i2c_config[dev].sda;
|
|
bus(dev)->FREQUENCY = i2c_config[dev].speed;
|
|
}
|
|
|
|
void i2c_init(i2c_t dev)
|
|
{
|
|
assert(dev < I2C_NUMOF);
|
|
|
|
/* Initialize mutex */
|
|
mutex_init(&busy[dev]);
|
|
mutex_lock(&busy[dev]);
|
|
|
|
/* disable device during initialization, will be enabled when acquire is
|
|
* called */
|
|
bus(dev)->ENABLE = TWIM_ENABLE_ENABLE_Disabled;
|
|
|
|
/* configure pins */
|
|
_init_pins(dev);
|
|
|
|
/* configure shared periphal speed */
|
|
_setup_shared_peripheral(dev);
|
|
|
|
shared_irq_register_i2c(bus(dev), i2c_isr_handler, (void *)(uintptr_t)dev);
|
|
|
|
/* We expect that the device was being acquired before
|
|
* the i2c_init_master() function is called, so it should be enabled when
|
|
* exiting this function. */
|
|
bus(dev)->ENABLE = TWIM_ENABLE_ENABLE_Enabled;
|
|
}
|
|
|
|
#ifdef MODULE_PERIPH_I2C_RECONFIGURE
|
|
void i2c_init_pins(i2c_t dev)
|
|
{
|
|
assert(dev < I2C_NUMOF);
|
|
|
|
_init_pins(dev);
|
|
|
|
bus(dev)->ENABLE = TWIM_ENABLE_ENABLE_Enabled;
|
|
|
|
mutex_unlock(&locks[dev]);
|
|
}
|
|
|
|
void i2c_deinit_pins(i2c_t dev)
|
|
{
|
|
assert(dev < I2C_NUMOF);
|
|
|
|
mutex_lock(&locks[dev]);
|
|
bus(dev)->ENABLE = TWIM_ENABLE_ENABLE_Disabled;
|
|
}
|
|
#endif /* MODULE_PERIPH_I2C_RECONFIGURE */
|
|
|
|
void i2c_acquire(i2c_t dev)
|
|
{
|
|
assert(dev < I2C_NUMOF);
|
|
|
|
if (IS_USED(MODULE_PERIPH_I2C_RECONFIGURE)) {
|
|
mutex_lock(&locks[dev]);
|
|
}
|
|
|
|
nrf5x_i2c_acquire(bus(dev), i2c_isr_handler, (void *)(uintptr_t)dev);
|
|
_setup_shared_peripheral(dev);
|
|
|
|
bus(dev)->ENABLE = TWIM_ENABLE_ENABLE_Enabled;
|
|
|
|
DEBUG("[i2c] acquired dev %i\n", (int)dev);
|
|
}
|
|
|
|
void i2c_release(i2c_t dev)
|
|
{
|
|
assert(dev < I2C_NUMOF);
|
|
|
|
bus(dev)->ENABLE = TWIM_ENABLE_ENABLE_Disabled;
|
|
|
|
if (IS_USED(MODULE_PERIPH_I2C_RECONFIGURE)) {
|
|
mutex_unlock(&locks[dev]);
|
|
}
|
|
|
|
nrf5x_i2c_release(bus(dev));
|
|
|
|
DEBUG("[i2c] released dev %i\n", (int)dev);
|
|
}
|
|
|
|
int i2c_write_regs(i2c_t dev, uint16_t addr, uint16_t reg,
|
|
const void *data, size_t len, uint8_t flags)
|
|
{
|
|
assert((dev < I2C_NUMOF) && data && (len > 0) && (len < 253));
|
|
|
|
if (flags & (I2C_NOSTART | I2C_ADDR10)) {
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* the nrf52's TWI device does not support to do two consecutive transfers
|
|
* without a repeated start condition in between. So we have to put all data
|
|
* to be transferred into a buffer (tx_buf).
|
|
* */
|
|
|
|
uint8_t reg_addr_len; /* Length in bytes of the register address */
|
|
|
|
/* Lock tx_buf */
|
|
mutex_lock(&buffer_lock);
|
|
|
|
if (flags & (I2C_REG16)) {
|
|
reg_addr_len = 2;
|
|
/* Prepare the 16-bit register transfer */
|
|
tx_buf[0] = reg >> 8; /* AddrH in the first byte */
|
|
tx_buf[1] = reg & 0xFF; /* AddrL in the second byte */
|
|
}
|
|
else{
|
|
reg_addr_len = 1;
|
|
tx_buf[0] = reg;
|
|
}
|
|
|
|
memcpy(&tx_buf[reg_addr_len], data, len);
|
|
int ret = direct_i2c_write_bytes(dev, addr, tx_buf, reg_addr_len + len, flags);
|
|
|
|
/* Release tx_buf */
|
|
mutex_unlock(&buffer_lock);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
int i2c_read_bytes(i2c_t dev, uint16_t addr, void *data, size_t len,
|
|
uint8_t flags)
|
|
{
|
|
assert((dev < I2C_NUMOF) && data && (len > 0) && (len < 256));
|
|
|
|
if (flags & (I2C_NOSTART | I2C_ADDR10 | I2C_NOSTOP)) {
|
|
return -EOPNOTSUPP;
|
|
}
|
|
DEBUG("[i2c] read_bytes: %i bytes from addr 0x%02x\n", (int)len, (int)addr);
|
|
|
|
bus(dev)->ADDRESS = addr;
|
|
bus(dev)->RXD.PTR = (uint32_t)data;
|
|
bus(dev)->RXD.MAXCNT = (uint8_t)len;
|
|
|
|
int inten_success_flag;
|
|
bus(dev)->SHORTS = TWIM_SHORTS_LASTRX_STOP_Msk;
|
|
inten_success_flag = TWIM_INTEN_STOPPED_Msk;
|
|
/* Start transmission */
|
|
bus(dev)->TASKS_STARTRX = 1;
|
|
|
|
return finish(dev, inten_success_flag);
|
|
}
|
|
|
|
int i2c_read_regs(i2c_t dev, uint16_t addr, uint16_t reg,
|
|
void *data, size_t len, uint8_t flags)
|
|
{
|
|
assert((dev < I2C_NUMOF) && data && (len > 0) && (len < 256));
|
|
|
|
if (flags & (I2C_NOSTART | I2C_ADDR10 | I2C_NOSTOP)) {
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
DEBUG("[i2c] read_regs: %i byte(s) from reg 0x%02x at addr 0x%02x\n",
|
|
(int)len, (int)reg, (int)addr);
|
|
|
|
/* Prepare transfer */
|
|
bus(dev)->ADDRESS = addr;
|
|
if (flags & (I2C_REG16)) {
|
|
/* Register endianness for 16 bit */
|
|
reg = htons(reg);
|
|
bus(dev)->TXD.MAXCNT = 2;
|
|
}
|
|
else {
|
|
bus(dev)->TXD.MAXCNT = 1;
|
|
}
|
|
bus(dev)->TXD.PTR = (uint32_t)®
|
|
bus(dev)->RXD.PTR = (uint32_t)data;
|
|
bus(dev)->RXD.MAXCNT = (uint8_t)len;
|
|
|
|
int inten_success_flag = TWIM_INTEN_STOPPED_Msk;
|
|
bus(dev)->SHORTS = TWIM_SHORTS_LASTTX_STARTRX_Msk | TWIM_SHORTS_LASTRX_STOP_Msk;
|
|
|
|
/* Start transfer */
|
|
bus(dev)->TASKS_STARTTX = 1;
|
|
|
|
return finish(dev, inten_success_flag);
|
|
}
|
|
|
|
int i2c_write_bytes(i2c_t dev, uint16_t addr, const void *data, size_t len,
|
|
uint8_t flags)
|
|
{
|
|
if ((unsigned int)data >= CPU_RAM_BASE && (unsigned int)data < CPU_RAM_BASE + CPU_RAM_SIZE) {
|
|
return direct_i2c_write_bytes(dev, addr, data, len, flags);
|
|
}
|
|
|
|
/* These are critical for the memcpy; direct_i2c_write_bytes makes some
|
|
* more */
|
|
assert((len > 0) && (len < 256));
|
|
|
|
/* Lock tx_buf */
|
|
mutex_lock(&buffer_lock);
|
|
|
|
memcpy(tx_buf, data, len);
|
|
|
|
int result = direct_i2c_write_bytes(dev, addr, tx_buf, len, flags);
|
|
|
|
/* Release tx_buf */
|
|
mutex_unlock(&buffer_lock);
|
|
|
|
return result;
|
|
}
|
|
|
|
int direct_i2c_write_bytes(i2c_t dev, uint16_t addr, const void *data,
|
|
size_t len,
|
|
uint8_t flags)
|
|
{
|
|
assert((dev < I2C_NUMOF) && data && (len > 0) && (len < 256));
|
|
|
|
if (flags & (I2C_NOSTART | I2C_ADDR10)) {
|
|
return -EOPNOTSUPP;
|
|
}
|
|
DEBUG("[i2c] write_bytes: %i byte(s) to addr 0x%02x\n", (int)len, (int)addr);
|
|
|
|
bus(dev)->ADDRESS = addr;
|
|
bus(dev)->TXD.PTR = (uint32_t)data;
|
|
bus(dev)->TXD.MAXCNT = (uint8_t)len;
|
|
int inten_success_flag;
|
|
if (!(flags & I2C_NOSTOP)) {
|
|
bus(dev)->SHORTS = TWIM_SHORTS_LASTTX_STOP_Msk;
|
|
inten_success_flag = TWIM_INTEN_STOPPED_Msk;
|
|
}
|
|
else {
|
|
bus(dev)->SHORTS = 0;
|
|
inten_success_flag = TWIM_INTEN_LASTTX_Msk;
|
|
}
|
|
bus(dev)->TASKS_STARTTX = 1;
|
|
|
|
return finish(dev, inten_success_flag);
|
|
}
|
|
|
|
void i2c_isr_handler(void *arg)
|
|
{
|
|
i2c_t dev = (i2c_t)(uintptr_t)arg;
|
|
|
|
/* Mask interrupts to ensure that they only trigger once */
|
|
bus(dev)->INTENCLR = TWIM_INTEN_STOPPED_Msk | TWIM_INTEN_ERROR_Msk | TWIM_INTEN_LASTTX_Msk;
|
|
|
|
mutex_unlock(&busy[dev]);
|
|
}
|