1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/tests/periph_uart_mode/main.c

202 lines
5.4 KiB
C

/*
* Copyright (C) 2018 Sparkmeter
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup tests
* @{
*
* @file
* @brief Manual test application for UART mode on CPUs with only one UART
*
* @author Ben Postman <ben.l.postman@gmail.com>
*
* @}
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "clk.h"
#include "board.h"
#include "periph/uart.h"
#include "periph_conf.h"
#include "stdio_uart.h"
#include "xtimer.h"
/* Number of different options for each mode parameter */
#define DATA_BIT_OPTIONS (4)
#define PARITY_OPTIONS (5)
#define STOP_BIT_OPTIONS (2)
#define TOTAL_OPTIONS (DATA_BIT_OPTIONS * PARITY_OPTIONS * STOP_BIT_OPTIONS)
/* Character positions in the mode string */
#define DATA_BIT_POS (0)
#define PARITY_POS (1)
#define STOP_BIT_POS (2)
/* Length of the printable mode string, includes null terminator */
#define MODE_STR_LEN (4)
/* UART_DEV is always 0 since this test is for device with 1 UART */
#define _UART_DEV (UART_DEV(0))
/* Delay between each mode, makes parsing results easier */
#ifndef DELAY_US
#define DELAY_US 50000
#endif
/* Stores each mode string for printing at the end of the test */
static char mode_strings[TOTAL_OPTIONS][MODE_STR_LEN];
static void _delay(void)
{
if (IS_USED(MODULE_XTIMER)) {
xtimer_usleep(DELAY_US);
}
else {
/*
* As fallback for freshly ported boards with no timer drivers written
* yet, we just use the CPU to delay execution and assume that roughly
* 20 CPU cycles are spend per loop iteration.
*
* Note that the volatile qualifier disables compiler optimizations for
* all accesses to the counter variable. Without volatile, modern
* compilers would detect that the loop is only wasting CPU cycles and
* optimize it out - but here the wasting of CPU cycles is desired.
*/
uint32_t loops = coreclk() / 20;
for (volatile uint32_t i = 0; i < loops; i++) { }
}
}
static void _get_mode(const uart_data_bits_t data_bits,
const uart_parity_t parity, const uart_stop_bits_t stop_bits, char* mode_str) {
switch (data_bits) {
case UART_DATA_BITS_5:
mode_str[DATA_BIT_POS] = '5';
break;
case UART_DATA_BITS_6:
mode_str[DATA_BIT_POS] = '6';
break;
case UART_DATA_BITS_7:
mode_str[DATA_BIT_POS] = '7';
break;
case UART_DATA_BITS_8:
mode_str[DATA_BIT_POS] = '8';
break;
default:
break;
}
switch (parity) {
case UART_PARITY_NONE:
mode_str[PARITY_POS] = 'N';
break;
case UART_PARITY_EVEN:
mode_str[PARITY_POS] = 'E';
break;
case UART_PARITY_ODD:
mode_str[PARITY_POS] = 'O';
break;
case UART_PARITY_MARK:
mode_str[PARITY_POS] = 'M';
break;
case UART_PARITY_SPACE:
mode_str[PARITY_POS] = 'S';
break;
default:
break;
}
switch (stop_bits) {
case UART_STOP_BITS_1:
mode_str[STOP_BIT_POS] = '1';
break;
case UART_STOP_BITS_2:
mode_str[STOP_BIT_POS] = '2';
break;
default:
break;
}
mode_str[MODE_STR_LEN - 1] = '\0';
}
int main(void)
{
int8_t status;
/* Stores the result for each mode */
bool results[TOTAL_OPTIONS];
/* Results index that is used to associate mode_strings and results */
uint8_t ridx = 0;
/* Use arrays so that each option can be easily iterated over */
const uart_data_bits_t data_bits[DATA_BIT_OPTIONS] = {
UART_DATA_BITS_5,
UART_DATA_BITS_6,
UART_DATA_BITS_7,
UART_DATA_BITS_8
};
const uart_parity_t parity[PARITY_OPTIONS] = {
UART_PARITY_NONE,
UART_PARITY_EVEN,
UART_PARITY_ODD,
UART_PARITY_MARK,
UART_PARITY_SPACE
};
const uart_stop_bits_t stop_bits[STOP_BIT_OPTIONS] = {
UART_STOP_BITS_1,
UART_STOP_BITS_2
};
/* Test each permutation */
for (int didx = 0; didx < 4; ++didx) {
for (int pidx = 0; pidx < 5; ++pidx) {
for (int sidx = 0; sidx < 2; ++sidx) {
/* Initialize stdio to get printf */
stdio_init();
status = uart_mode(_UART_DEV, data_bits[didx],
parity[pidx], stop_bits[sidx]);
_get_mode(data_bits[didx], parity[pidx],
stop_bits[sidx], mode_strings[ridx]);
if (status == UART_OK) {
results[ridx] = true;
printf("%s\n", mode_strings[ridx]);
_delay();
}
else {
results[ridx] = false;
}
ridx++;
}
}
}
/* Reset mode and print results */
stdio_init();
uart_mode(_UART_DEV, UART_DATA_BITS_8, UART_PARITY_NONE, UART_STOP_BITS_1);
for (int i = 0; i < TOTAL_OPTIONS; ++i) {
if (results[i] == true) {
printf("%s: Supported\n", mode_strings[i]);
}
else {
printf("%s: Unsupported\n", mode_strings[i]);
}
}
return 0;
}