1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/stm32f0/periph/spi.c
2014-09-24 15:41:48 +02:00

368 lines
9.2 KiB
C

/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32f0
* @{
*
* @file
* @brief Low-level GPIO driver implementation
*
* @author Peter Kietzmann <peter.kietzmann@haw-hamburg.de>
* @author Hauke Petersen <mail@haukepetersen.de>
*
* @}
*/
#include "cpu.h"
#include "board.h"
#include "periph/spi.h"
#include "periph_conf.h"
#include "thread.h"
#include "sched.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
/* guard file in case no SPI device is defined */
#if SPI_NUMOF
/**
* @brief unified interrupt handler to be shared between SPI devices
*
* @param[in] spi Pointer to the devices base register
* @param[in] dev The device that triggered the interrupt
*/
static inline void irq_handler(SPI_TypeDef *spi, spi_t dev);
/**
* @brief structure that defines the state for an SPI device
*/
typedef struct {
char (*cb)(char data);
} spi_state_t;
/**
* @brief array with one field for each possible SPI device
*/
static spi_state_t spi_config[SPI_NUMOF];
int spi_init_master(spi_t dev, spi_conf_t conf, spi_speed_t speed)
{
SPI_TypeDef *spi = 0;
GPIO_TypeDef *port = 0;
int pin[3]; /* 3 pins: sck, miso, mosi */
int af;
/* power on the SPI device */
spi_poweron(dev);
switch (dev) {
#if SPI_0_EN
case SPI_0:
spi = SPI_0_DEV;
port = SPI_0_PORT;
pin[0] = SPI_0_PIN_SCK;
pin[1] = SPI_0_PIN_MISO;
pin[2] = SPI_0_PIN_MOSI;
af = SPI_0_PIN_AF;
SPI_0_PORT_CLKEN();
break;
#endif
#if SPI_1_EN
case SPI_1:
spi = SPI_1_DEV;
port = SPI_1_PORT;
pin[0] = SPI_1_PIN_SCK;
pin[1] = SPI_1_PIN_MISO;
pin[2] = SPI_1_PIN_MOSI;
af = SPI_1_PIN_AF;
SPI_0_PORT_CLKEN();
break;
#endif
}
/* configure pins for their correct alternate function */
for (int i = 0; i < 3; i++) {
port->MODER &= ~(3 << (pin[i] * 2));
port->MODER |= (2 << (pin[i] * 2));
int hl = (pin[i] < 8) ? 0 : 1;
port->AFR[hl] &= (0xf << ((pin[i] - (hl * 8)) * 4));
port->AFR[hl] |= (af << ((pin[i] - (hl * 8)) * 4));
}
/* reset SPI configuration registers */
spi->CR1 = 0;
spi->CR2 = 0;
spi->I2SCFGR = 0; /* this makes sure SPI mode is selected */
/* configure bus clock speed */
switch (speed) {
case SPI_SPEED_100KHZ:
spi->CR1 |= (7 << 3); /* actual clock: 187.5KHz (lowest possible) */
break;
case SPI_SPEED_400KHZ:
spi->CR1 |= (6 << 3); /* actual clock: 375KHz */
break;
case SPI_SPEED_1MHZ:
spi->CR1 |= (4 << 3); /* actual clock: 1.5MHz */
break;
case SPI_SPEED_5MHZ:
spi->CR1 |= (2 << 3); /* actual clock: 6MHz */
break;
case SPI_SPEED_10MHZ:
spi->CR1 |= (1 << 3); /* actual clock 12MHz */
}
/* select clock polarity and clock phase */
spi->CR1 |= conf;
/* select master mode */
spi->CR1 |= SPI_CR1_MSTR;
/* the NSS (chip select) is managed purely by software */
spi->CR1 |= SPI_CR1_SSM | SPI_CR1_SSI;
/* set data-size to 8-bit */
spi->CR2 |= (0x7 << 8);
/* set FIFO threshold to set RXNE when 8 bit are received */
spi->CR2 |= SPI_CR2_FRXTH;
/* enable the SPI device */
spi->CR1 |= SPI_CR1_SPE;
return 0;
}
int spi_init_slave(spi_t dev, spi_conf_t conf, char (*cb)(char data))
{
SPI_TypeDef *spi = 0;
GPIO_TypeDef *port = 0;
int pin[3]; /* 3 pins: sck, miso, mosi */
int af;
/* enable the SPI modules clock */
spi_poweron(dev);
switch (dev) {
#if SPI_0_EN
case SPI_0:
spi = SPI_0_DEV;
port = SPI_0_PORT;
pin[0] = SPI_0_PIN_SCK;
pin[1] = SPI_0_PIN_MISO;
pin[2] = SPI_0_PIN_MOSI;
af = SPI_0_PIN_AF;
SPI_0_PORT_CLKEN();
NVIC_SetPriority(SPI_0_IRQ, SPI_IRQ_PRIO);
NVIC_EnableIRQ(SPI_0_IRQ);
break;
#endif
#if SPI_1_EN
case SPI_1:
spi = SPI_1_DEV;
port = SPI_1_PORT;
pin[0] = SPI_1_PIN_SCK;
pin[1] = SPI_1_PIN_MISO;
pin[2] = SPI_1_PIN_MOSI;
af = SPI_1_PIN_AF;
SPI_1_PORT_CLKEN();
NVIC_SetPriority(SPI_1_IRQ, SPI_IRQ_PRIO);
NVIC_EnableIRQ(SPI_1_IRQ);
break;
#endif
}
/* set callback */
spi_config[dev].cb = cb;
/* configure pins for their correct alternate function */
for (int i = 0; i < 3; i++) {
port->MODER &= ~(3 << (pin[i] * 2));
port->MODER |= (2 << (pin[i] * 2));
int hl = (pin[i] < 8) ? 0 : 1;
port->AFR[hl] &= (0xf << ((pin[i] - (hl * 8)) * 4));
port->AFR[hl] |= (af << ((pin[i] - (hl * 8)) * 4));
}
/* reset SPI configuration registers */
spi->CR1 = 0;
spi->CR2 = 0;
spi->I2SCFGR = 0; /* this makes sure SPI mode is selected */
/* select clock polarity and clock phase */
spi->CR1 |= conf;
/* the NSS (chip select) is managed by software and NSS is low (slave enabled) */
spi->CR1 |= SPI_CR1_SSM;
/* set data-size to 8-bit */
spi->CR2 |= (0x7 << 8);
/* set FIFO threshold to set RXNE when 8 bit are received */
spi->CR2 |= SPI_CR2_FRXTH;
/* enable interrupt for arriving data: 'receive register no empty' and errors */
spi->CR2 |= SPI_CR2_RXNEIE | SPI_CR2_ERRIE;
/* enable the SPI device */
spi->CR1 |= SPI_CR1_SPE;
return 0;
}
int spi_transfer_byte(spi_t dev, char out, char *in)
{
char tmp;
SPI_TypeDef *spi = 0;
switch (dev) {
#if SPI_0_EN
case SPI_0:
spi = SPI_0_DEV;
break;
#endif
#if SPI_1_EN
case SPI_1:
spi = SPI_1_DEV;
break;
#endif
}
/* wait for an eventually previous byte to be readily transferred */
while(!(spi->SR & SPI_SR_TXE));
/* put next byte into the output register */
*((volatile uint8_t *)(&spi->DR)) = (uint8_t)out;
/* wait until the current byte was successfully transferred */
while(!(spi->SR & SPI_SR_RXNE) );
/* read response byte to reset flags */
tmp = *((volatile uint8_t *)(&spi->DR));
/* 'return' response byte if wished for */
if (in) {
*in = tmp;
}
return 1;
}
int spi_transfer_bytes(spi_t dev, char *out, char *in, unsigned int length)
{
char res;
for (int i = 0; i < length; i++) {
DEBUG("Ready for byte %i\n", i);
if (out) {
DEBUG("Send out with real data: %c\n", out[i]);
spi_transfer_byte(dev, out[i], &res);
}
else {
DEBUG("Send byte with zero data\n");
spi_transfer_byte(dev, 0, &res);
}
if (in) {
DEBUG("Got byte: %c\n", res);
in[i] = res;
}
}
return length;
}
int spi_transfer_reg(spi_t dev, uint8_t reg, char out, char *in)
{
spi_transfer_byte(dev, reg, 0);
return spi_transfer_byte(dev, out, in);
}
int spi_transfer_regs(spi_t dev, uint8_t reg, char *out, char *in, unsigned int length)
{
spi_transfer_byte(dev, reg, 0);
return spi_transfer_bytes(dev, out, in, length);
}
void spi_transmission_begin(spi_t dev, char reset_val)
{
switch (dev) {
#if SPI_0_EN
case SPI_0:
*((volatile uint8_t *)(&SPI_0_DEV->DR)) = (uint8_t)reset_val;
break;
#endif
#if SPI_1_EN
case SPI_1:
*((volatile uint8_t *)(&SPI_1_DEV->DR)) = (uint8_t)reset_val;
break;
#endif
}
}
void spi_poweron(spi_t dev)
{
switch (dev) {
#if SPI_0_EN
case SPI_0:
SPI_0_CLKEN();
break;
#endif
#if SPI_1_EN
case SPI_1:
SPI_1_CLKEN();
break;
#endif
}
}
void spi_poweroff(spi_t dev)
{
switch (dev) {
#if SPI_0_EN
case SPI_0:
while (SPI_0_DEV->SR & SPI_SR_BSY);
SPI_0_CLKDIS();
break;
#endif
#if SPI_1_EN
case SPI_1:
while (SPI_1_DEV->SR & SPI_SR_BSY);
SPI_1_CLKDIS();
break;
#endif
}
}
static inline void irq_handler(SPI_TypeDef *spi, spi_t dev)
{
char data;
/* call owner when new byte was receive (asserts SPI is in slave mode) */
if (spi->SR & SPI_SR_RXNE) {
/* read received byte from data register */
data = *((volatile uint8_t *)(&spi->DR));
/* call callback for receiving the answer of the received byte */
//data = spi_config[dev].cb(data);
/* set answer byte to be transferred next */
*((volatile uint8_t *)(&spi->DR)) = (uint8_t)data;
}
if (sched_context_switch_request) {
thread_yield();
}
}
#if SPI_0_EN
__attribute__((naked)) void SPI_0_ISR(void)
{
ISR_ENTER();
LD4_TOGGLE;
irq_handler(SPI_0_DEV, SPI_0);
LD4_TOGGLE;
ISR_EXIT();
}
#endif
#if SPI_1_EN
__attribute__((naked)) void SPI_1_ISR(void)
{
ISR_ENTER();
irq_handler(SPI_1_DEV, SPI_1);
ISR_EXIT();
}
#endif
#endif /* SPI_NUMOF */