1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/samd21/periph/timer.c
Joakim Nohlgård dfa342b5f8 cpu/samd21: Avoid clearing interrupt bits unintentionally
The INTENSET, INTENCLR, INTFLAG registers are write-1-to-confirm
registers, so writing zeroes will not affect anything, on the other
hand, a compiler generated read-modify-write cycle may unintentionally
affect more bits than the one being set. Avoid by using direct
assignment instead of or-assignment (|=) or bitfield writes (.bit.xxx=).
2018-03-27 07:54:18 +02:00

352 lines
9.0 KiB
C

/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_samd21
* @ingroup drivers_periph_timer
* @{
*
* @file
* @brief Low-level timer driver implementation
*
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
*
* @}
*/
#include <stdlib.h>
#include <stdio.h>
#include "board.h"
#include "cpu.h"
#include "periph/timer.h"
#include "periph_conf.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
/**
* @brief Timer state memory
*/
static timer_isr_ctx_t config[TIMER_NUMOF];
/* enable timer interrupts */
static inline void _irq_enable(tim_t dev);
/**
* @brief Setup the given timer
*/
int timer_init(tim_t dev, unsigned long freq, timer_cb_t cb, void *arg)
{
/* at the moment, the timer can only run at 1MHz */
if (freq != 1000000ul) {
return -1;
}
/* select the clock generator depending on the main clock source:
* GCLK0 (1MHz) if we use the internal 8MHz oscillator
* GCLK1 (8MHz) if we use the PLL */
#if CLOCK_USE_PLL || CLOCK_USE_XOSC32_DFLL
/* configure GCLK1 (configured to 1MHz) to feed TC3, TC4 and TC5 */;
/* configure GCLK1 to feed TC3, TC4 and TC5 */;
GCLK->CLKCTRL.reg = (uint16_t)((GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK1 | (TC3_GCLK_ID << GCLK_CLKCTRL_ID_Pos)));
while (GCLK->STATUS.bit.SYNCBUSY) {}
/* TC4 and TC5 share the same channel */
GCLK->CLKCTRL.reg = (uint16_t)((GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK1 | (TC4_GCLK_ID << GCLK_CLKCTRL_ID_Pos)));
#else
/* configure GCLK0 to feed TC3, TC4 and TC5 */;
GCLK->CLKCTRL.reg = (uint16_t)((GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | (TC3_GCLK_ID << GCLK_CLKCTRL_ID_Pos)));
/* TC4 and TC5 share the same channel */
GCLK->CLKCTRL.reg = (uint16_t)((GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | (TC4_GCLK_ID << GCLK_CLKCTRL_ID_Pos)));
#endif
while (GCLK->STATUS.bit.SYNCBUSY) {}
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
if (TIMER_0_DEV.CTRLA.bit.ENABLE) {
return 0;
}
PM->APBCMASK.reg |= PM_APBCMASK_TC3;
/* reset timer */
TIMER_0_DEV.CTRLA.bit.SWRST = 1;
while (TIMER_0_DEV.CTRLA.bit.SWRST) {}
/* choosing 16 bit mode */
TIMER_0_DEV.CTRLA.bit.MODE = TC_CTRLA_MODE_COUNT16_Val;
#if CLOCK_USE_PLL || CLOCK_USE_XOSC32_DFLL
/* PLL/DFLL: sourced by 1MHz and prescaler 1 to reach 1MHz */
TIMER_0_DEV.CTRLA.bit.PRESCALER = TC_CTRLA_PRESCALER_DIV1_Val;
#else
/* sourced by 8MHz with Presc 8 results in 1MHz clk */
TIMER_0_DEV.CTRLA.bit.PRESCALER = TC_CTRLA_PRESCALER_DIV8_Val;
#endif
/* choose normal frequency operation */
TIMER_0_DEV.CTRLA.bit.WAVEGEN = TC_CTRLA_WAVEGEN_NFRQ_Val;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
if (TIMER_1_DEV.CTRLA.bit.ENABLE) {
return 0;
}
PM->APBCMASK.reg |= PM_APBCMASK_TC4;
/* reset timer */
TIMER_1_DEV.CTRLA.bit.SWRST = 1;
while (TIMER_1_DEV.CTRLA.bit.SWRST) {}
TIMER_1_DEV.CTRLA.bit.MODE = TC_CTRLA_MODE_COUNT32_Val;
#if CLOCK_USE_PLL || CLOCK_USE_XOSC32_DFLL
/* PLL/DFLL: sourced by 1MHz and prescaler 1 to reach 1MHz */
TIMER_1_DEV.CTRLA.bit.PRESCALER = TC_CTRLA_PRESCALER_DIV1_Val;
#else
/* sourced by 8MHz with Presc 8 results in 1Mhz clk */
TIMER_1_DEV.CTRLA.bit.PRESCALER = TC_CTRLA_PRESCALER_DIV8_Val;
#endif
/* choose normal frequency operation */
TIMER_1_DEV.CTRLA.bit.WAVEGEN = TC_CTRLA_WAVEGEN_NFRQ_Val;
break;
#endif
case TIMER_UNDEFINED:
default:
return -1;
}
/* save callback */
config[dev].cb = cb;
config[dev].arg = arg;
/* enable interrupts for given timer */
_irq_enable(dev);
timer_start(dev);
return 0;
}
int timer_set_absolute(tim_t dev, int channel, unsigned int value)
{
DEBUG("Setting timer %i channel %i to %i\n", dev, channel, value);
/* get timer base register address */
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
/* set timeout value */
switch (channel) {
case 0:
TIMER_0_DEV.INTFLAG.reg = TC_INTFLAG_MC0;
TIMER_0_DEV.CC[0].reg = value;
TIMER_0_DEV.INTENSET.reg = TC_INTENSET_MC0;
break;
case 1:
TIMER_0_DEV.INTFLAG.reg = TC_INTFLAG_MC1;
TIMER_0_DEV.CC[1].reg = value;
TIMER_0_DEV.INTENSET.reg = TC_INTENSET_MC1;
break;
default:
return -1;
}
break;
#endif
#if TIMER_1_EN
case TIMER_1:
/* set timeout value */
switch (channel) {
case 0:
TIMER_1_DEV.INTFLAG.reg = TC_INTFLAG_MC0;
TIMER_1_DEV.CC[0].reg = value;
TIMER_1_DEV.INTENSET.reg = TC_INTENSET_MC0;
break;
case 1:
TIMER_1_DEV.INTFLAG.reg = TC_INTFLAG_MC1;
TIMER_1_DEV.CC[1].reg = value;
TIMER_1_DEV.INTENSET.reg = TC_INTENSET_MC1;
break;
default:
return -1;
}
break;
#endif
case TIMER_UNDEFINED:
default:
return -1;
}
return 1;
}
int timer_clear(tim_t dev, int channel)
{
/* get timer base register address */
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
switch (channel) {
case 0:
TIMER_0_DEV.INTFLAG.reg = TC_INTFLAG_MC0;
TIMER_0_DEV.INTENCLR.reg = TC_INTENCLR_MC0;
break;
case 1:
TIMER_0_DEV.INTFLAG.reg = TC_INTFLAG_MC1;
TIMER_0_DEV.INTENCLR.reg = TC_INTENCLR_MC1;
break;
default:
return -1;
}
break;
#endif
#if TIMER_1_EN
case TIMER_1:
switch (channel) {
case 0:
TIMER_1_DEV.INTFLAG.reg = TC_INTFLAG_MC0;
TIMER_1_DEV.INTENCLR.reg = TC_INTENCLR_MC0;
break;
case 1:
TIMER_1_DEV.INTFLAG.reg = TC_INTFLAG_MC1;
TIMER_1_DEV.INTENCLR.reg = TC_INTENCLR_MC1;
break;
default:
return -1;
}
break;
#endif
case TIMER_UNDEFINED:
default:
return -1;
}
return 1;
}
unsigned int timer_read(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
/* request syncronisation */
TIMER_0_DEV.READREQ.reg = TC_READREQ_RREQ | TC_READREQ_ADDR(0x10);
while (TIMER_0_DEV.STATUS.bit.SYNCBUSY) {}
return TIMER_0_DEV.COUNT.reg;
#endif
#if TIMER_1_EN
case TIMER_1:
/* request syncronisation */
TIMER_1_DEV.READREQ.reg = TC_READREQ_RREQ | TC_READREQ_ADDR(0x10);
while (TIMER_1_DEV.STATUS.bit.SYNCBUSY) {}
return TIMER_1_DEV.COUNT.reg;
#endif
default:
return 0;
}
}
void timer_stop(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
TIMER_0_DEV.CTRLA.bit.ENABLE = 0;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
TIMER_1_DEV.CTRLA.bit.ENABLE = 0;
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
void timer_start(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
TIMER_0_DEV.CTRLA.bit.ENABLE = 1;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
TIMER_1_DEV.CTRLA.bit.ENABLE = 1;
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
static inline void _irq_enable(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
NVIC_EnableIRQ(TC3_IRQn);
break;
#endif
#if TIMER_1_EN
case TIMER_1:
NVIC_EnableIRQ(TC4_IRQn);
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
#if TIMER_0_EN
void TIMER_0_ISR(void)
{
if (TIMER_0_DEV.INTFLAG.bit.MC0 && TIMER_0_DEV.INTENSET.bit.MC0) {
TIMER_0_DEV.INTFLAG.reg = TC_INTFLAG_MC0;
TIMER_0_DEV.INTENCLR.reg = TC_INTENCLR_MC0;
if(config[TIMER_0].cb) {
config[TIMER_0].cb(config[TIMER_0].arg, 0);
}
}
if (TIMER_0_DEV.INTFLAG.bit.MC1 && TIMER_0_DEV.INTENSET.bit.MC1) {
TIMER_0_DEV.INTFLAG.reg = TC_INTFLAG_MC1;
TIMER_0_DEV.INTENCLR.reg = TC_INTENCLR_MC1;
if(config[TIMER_0].cb) {
config[TIMER_0].cb(config[TIMER_0].arg, 1);
}
}
cortexm_isr_end();
}
#endif /* TIMER_0_EN */
#if TIMER_1_EN
void TIMER_1_ISR(void)
{
if (TIMER_1_DEV.INTFLAG.bit.MC0 && TIMER_1_DEV.INTENSET.bit.MC0) {
TIMER_1_DEV.INTFLAG.reg = TC_INTFLAG_MC0;
TIMER_1_DEV.INTENCLR.reg = TC_INTENCLR_MC0;
if (config[TIMER_1].cb) {
config[TIMER_1].cb(config[TIMER_1].arg, 0);
}
}
if (TIMER_1_DEV.INTFLAG.bit.MC1 && TIMER_1_DEV.INTENSET.bit.MC1) {
TIMER_1_DEV.INTFLAG.reg = TC_INTFLAG_MC1;
TIMER_1_DEV.INTENCLR.reg = TC_INTENCLR_MC1;
if(config[TIMER_1].cb) {
config[TIMER_1].cb(config[TIMER_1].arg, 1);
}
}
cortexm_isr_end();
}
#endif /* TIMER_1_EN */