1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/kinetis/periph/i2c.c
Gunar Schorcht 007e29ebb5 cpu/periph/i2c: update implementations to new I2C API
Make all `spi_acquire` implementations return `void` and add assertions to check for valid device identifier where missing.
2021-11-29 06:35:25 +01:00

569 lines
18 KiB
C

/*
* Copyright (C) 2014 Freie Universität Berlin
* Copyright (C) 2014 PHYTEC Messtechnik GmbH
* Copyright (C) 2015-2018 Eistec AB
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_kinetis
* @ingroup drivers_periph_i2c
*
* @{
*
* @file
* @brief Low-level I2C driver implementation
*
* @author Johann Fischer <j.fischer@phytec.de>
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
*
* @}
*/
#include <assert.h>
#include <stdint.h>
#include <errno.h>
#include "cpu.h"
#include "irq.h"
#include "bit.h"
#include "mutex.h"
#include "thread.h"
#include "thread_flags.h"
#include "periph_conf.h"
#include "periph/i2c.h"
#define ENABLE_DEBUG 0
/* Define ENABLE_TRACE to 1 to enable printing of all TX/RX bytes to UART for extra verbose debugging */
#define ENABLE_TRACE 1
/* Define ENABLE_INIT_DEBUG to 1 to enable DEBUG prints in i2c_init. Currently
* this causes the system to hang when running i2c_init during boot because of
* uninitialized stdio UART */
#define ENABLE_INIT_DEBUG 0
#include "debug.h"
#if ENABLE_TRACE
#define TRACE(...) DEBUG(__VA_ARGS__)
#else
#define TRACE(...)
#endif
/**
* @brief Thread flag used internally for signaling between ISR and user thread
*/
#define THREAD_FLAG_KINETIS_I2C (1u << 8)
/**
* @brief Array of I2C module clock dividers
*
* The index in this array is the I2C_F setting number
*/
/*
* Divider values were copied from K22F reference manual
*/
static const uint16_t i2c_dividers[] = {
20, 22, 24, 26, 28, 30, 34, 40, /* 0x00 ~ 0x07 */
28, 32, 36, 40, 44, 48, 56, 68, /* 0x08 ~ 0x0f */
48, 56, 64, 72, 80, 88, 104, 128, /* 0x10 ~ 0x17 */
80, 96, 112, 128, 144, 160, 192, 240, /* 0x18 ~ 0x1f */
160, 192, 224, 256, 288, 320, 384, 480, /* 0x20 ~ 0x27 */
320, 384, 448, 512, 576, 640, 768, 960, /* 0x28 ~ 0x2f */
640, 768, 896, 1024, 1152, 1280, 1536, 1920, /* 0x30 ~ 0x37 */
1280, 1536, 1792, 2048, 2304, 2560, 3072, 3840, /* 0x38 ~ 0x3f */
};
/**
* @brief I2C IRQ reception state
*/
typedef struct {
uint8_t *datap; /**< pointer to output buffer */
size_t bytes_left; /**< how many bytes left to receive */
} i2c_rx_t;
/**
* @brief I2C IRQ transmission state
*/
typedef struct {
const uint8_t *datap; /**< pointer to input buffer */
size_t bytes_left; /**< how many bytes left to transmit */
} i2c_tx_t;
/**
* @brief Driver internal state
*/
typedef struct {
mutex_t mtx; /**< Mutex preventing multiple users of the same bus */
kernel_pid_t pid; /**< PID of thread waiting for a transfer to complete */
uint8_t active; /**< State variable to help catch user mistakes */
union {
i2c_tx_t tx; /**< State of ongoing transmission sequence */
i2c_rx_t rx; /**< State of ongoing reception sequence */
};
int retval; /**< return value from ISR */
} i2c_state_t;
static i2c_state_t i2c_state[I2C_NUMOF];
void i2c_acquire(i2c_t dev)
{
assert((unsigned)dev < I2C_NUMOF);
mutex_lock(&i2c_state[dev].mtx);
i2c_state[dev].pid = thread_getpid();
}
void i2c_release(i2c_t dev)
{
assert(dev < I2C_NUMOF);
/* Check that the bus was properly stopped before releasing */
/* It is a programming error to release the bus after sending a start
* condition but before sending a stop condition */
assert(i2c_state[dev].active == 0);
mutex_unlock(&i2c_state[dev].mtx);
}
static uint8_t i2c_find_divider(unsigned freq, unsigned speed)
{
unsigned diff = UINT_MAX;
/* Use maximum divider if nothing matches */
uint8_t F = ARRAY_SIZE(i2c_dividers) - 1;
/* We avoid using the MULT field to simplify the driver and avoid having to
* work around hardware errata on some Kinetis parts
*
* See:
* https://community.nxp.com/thread/377611
* https://mcuoneclipse.com/2012/12/05/kl25z-and-i2c-missing-repeated-start-condition/
*
* e6070: I2C: Repeat start cannot be generated if the I2Cx_F[MULT] field is set to a non-zero value
*
* Description:
* If the I2Cx_F[MULT] field is written with a non-zero value, then a repeat
* start cannot be generated
*
* Workaround:
* There are two possible workarounds:
* 1) Configure I2Cx_F[MULT] to zero if a repeat start has to be generated.
* 2) Temporarily set I2Cx_F [MULT] to zero immediately before setting the
* Repeat START bit in the I2C C1 register (I2Cx_C1[RSTA]=1) and restore
* the I2Cx_F [MULT] field to the original value after the repeated start
* has occurred
*/
for (unsigned k = 0; k < ARRAY_SIZE(i2c_dividers); ++k) {
/* Test dividers until we find one that gives a good match */
unsigned lim = (speed * i2c_dividers[k]);
if (lim >= freq) {
if ((lim - freq) < diff) {
diff = (lim - freq);
F = k;
}
}
}
if (ENABLE_INIT_DEBUG) {
DEBUG("i2c_divider: speed = %u, freq = %u, diff = %u, F = 0x%02x\n", speed, freq, diff, F);
}
return F;
}
static inline void i2c_clear_irq_flags(I2C_Type *i2c)
{
/* cppcheck-suppress selfAssignment
* (reason: intentional self assignment to clear all pending IRQs) */
i2c->S = i2c->S;
}
void i2c_init(i2c_t dev)
{
if (ENABLE_INIT_DEBUG) {
DEBUG("i2c_init: %u\n", (unsigned) dev);
}
assert((unsigned)dev < I2C_NUMOF);
const i2c_conf_t *conf = &i2c_config[dev];
I2C_Type *i2c = conf->i2c;
/* Turn on the module clock gate */
switch ((uintptr_t)i2c) {
#ifdef I2C0
case (uintptr_t)I2C0:
I2C0_CLKEN();
break;
#endif
#ifdef I2C1
case (uintptr_t)I2C1:
I2C1_CLKEN();
break;
#endif
#ifdef I2C2
case (uintptr_t)I2C2:
I2C2_CLKEN();
break;
#endif
default:
if (ENABLE_INIT_DEBUG) {
DEBUG("i2c_init: Unknown I2C device %p\n", (void *)i2c);
}
return;
}
i2c_state[dev].mtx = (mutex_t)MUTEX_INIT_LOCKED;
i2c_state[dev].active = 0;
i2c_state[dev].pid = KERNEL_PID_UNDEF;
if (ENABLE_INIT_DEBUG) {
DEBUG("i2c_init: init SCL pin\n");
}
gpio_init_port(conf->scl_pin, conf->scl_pcr);
if (ENABLE_INIT_DEBUG) {
DEBUG("i2c_init: init SDA pin\n");
}
gpio_init_port(conf->sda_pin, conf->sda_pcr);
/* Configure master settings */
i2c->C1 = 0; /* Disable module while messing with the settings */
/* Configure glitch filter register */
#ifdef I2C_FLT_SHEN_MASK
i2c->FLT = I2C_FLT_SHEN_MASK;
#else
i2c->FLT = 0;
#endif
i2c->F = i2c_find_divider(conf->freq, (unsigned)conf->speed);
/* Enable module */
i2c->C1 = I2C_C1_IICEN_MASK;
i2c_clear_irq_flags(i2c);
NVIC_EnableIRQ(conf->irqn);
mutex_unlock(&i2c_state[dev].mtx);
}
static int i2c_stop(i2c_t dev)
{
I2C_Type *i2c = i2c_config[dev].i2c;
/* Send stop condition */
TRACE("i2c: stop C1=%02x S=%02x\n", (unsigned)i2c->C1, (unsigned)i2c->S);
bit_clear8(&i2c->C1, I2C_C1_MST_SHIFT);
unsigned timeout = 0x10000;
while ((i2c->S & I2C_S_BUSY_MASK) && --timeout) {}
i2c_state[dev].active = 0;
if (timeout == 0) {
/* slave stretches the clock for too long */
DEBUG("i2c: timeout while stopping\n");
return -ETIMEDOUT;
}
TRACE("i2c: STOP C1=%02x S=%02x\n", (unsigned)i2c->C1, (unsigned)i2c->S);
return 0;
}
static int i2c_tx_addr(i2c_t dev, uint8_t byte)
{
I2C_Type *i2c = i2c_config[dev].i2c;
TRACE("i2c: txa: %02x\n", (unsigned)byte);
i2c->D = byte;
uint8_t S;
uint16_t timeout = UINT16_MAX;
do {
S = i2c->S;
} while (!(S & I2C_S_IICIF_MASK) && --timeout);
i2c_clear_irq_flags(i2c);
int res = 0;
if (S & I2C_S_ARBL_MASK) {
DEBUG("i2c: arbitration lost\n");
res = -EAGAIN;
}
else if (timeout == 0) {
/* slave stretches the clock for too long */
DEBUG("i2c: tx timeout\n");
res = -ETIMEDOUT;
}
else if (S & I2C_S_RXAK_MASK) {
DEBUG("i2c: NACK\n");
res = -ENXIO;
}
if (res < 0) {
bit_clear8(&i2c->C1, I2C_C1_MST_SHIFT);
i2c_state[dev].active = 0;
i2c_clear_irq_flags(i2c);
}
return res;
}
static int i2c_start(i2c_t dev, uint16_t addr, unsigned read_flag, uint8_t flags)
{
I2C_Type *i2c = i2c_config[dev].i2c;
TRACE("i2c: start C1=%02x S=%02x\n", (unsigned)i2c->C1, (unsigned)i2c->S);
/* Send start condition */
if (i2c->C1 & I2C_C1_MST_MASK) {
/* Repeat start */
i2c->C1 |= I2C_C1_IICEN_MASK | I2C_C1_RSTA_MASK | I2C_C1_TX_MASK;
}
else {
/* Initial start */
if (read_flag && (flags & I2C_ADDR10)) {
/* 10 bit addressing does not allow reading without a repeated start */
return -EINVAL;
}
uint16_t timeout = UINT16_MAX;
while ((i2c->S & I2C_S_BUSY_MASK) && --timeout) {}
if (timeout == 0) {
/* Someone else is using the bus for a long time, try again later */
DEBUG("i2c: start timeout\n");
return -EAGAIN;
}
/* slave -> master transition triggers the initial start condition */
i2c->C1 |= I2C_C1_IICEN_MASK | I2C_C1_MST_MASK | I2C_C1_TX_MASK;
}
i2c_state[dev].active = 1;
TRACE("i2c: Start C1=%02x S=%02x\n", (unsigned)i2c->C1, (unsigned)i2c->S);
if (i2c->S & I2C_S_ARBL_MASK) {
DEBUG("i2c: arbitration lost\n");
i2c_clear_irq_flags(i2c);
bit_clear8(&i2c->C1, I2C_C1_MST_SHIFT);
i2c_state[dev].active = 0;
return -EAGAIN;
}
if (flags & I2C_ADDR10) {
/* 10 bit addressing */
/* Send 10 bit address tag + 2 msb + R/W flag */
uint8_t msb = (addr >> 8);
uint8_t lsb = (addr & 0xff);
uint8_t addr_rw = I2C_10BIT_MAGIC | (msb << 1);
if (read_flag) {
addr_rw |= I2C_READ;
}
int res = i2c_tx_addr(dev, addr_rw);
if (res < 0) {
return res;
}
if (!read_flag) {
/* Send lower 8 bits of address */
res = i2c_tx_addr(dev, lsb);
}
return res;
}
/* 7 bit addressing */
/* Send address + R/W flag */
uint8_t addr_rw = (addr << 1);
if (read_flag) {
addr_rw |= I2C_READ;
}
return i2c_tx_addr(dev, addr_rw);
}
int i2c_read_bytes(i2c_t dev, uint16_t addr, void *data, size_t len, uint8_t flags)
{
assert((data != NULL) || (len == 0));
I2C_Type *i2c = i2c_config[dev].i2c;
DEBUG("i2c: r a:%02x, l:%u, f:%02x\n", addr, (unsigned)len, (unsigned)flags);
if (len == 1) {
/* Send NACK after next byte */
bit_set8(&i2c->C1, I2C_C1_TXAK_SHIFT);
}
else {
bit_clear8(&i2c->C1, I2C_C1_TXAK_SHIFT);
}
if (!(flags & I2C_NOSTART)) {
/* Send start condition and address */
int res = i2c_start(dev, addr, 1, flags);
if (res < 0) {
return res;
}
}
if (len > 0) {
/* We need IRQs enabled for interrupt based transfers */
assert(!__get_PRIMASK());
assert(!irq_is_in());
bit_clear8(&i2c->C1, I2C_C1_TX_SHIFT);
/* Configure IRQ transfer */
i2c_state[dev].rx.datap = data;
i2c_state[dev].rx.bytes_left = len;
i2c_state[dev].retval = 0;
bit_set8(&i2c->C1, I2C_C1_IICIE_SHIFT);
/* Initiate master receive mode by reading the data register once when
* the C1[TX] bit is cleared and C1[MST] is set */
volatile uint8_t dummy;
/* cppcheck-suppress unreadVariable
* (reason: needed to empty D register) */
dummy = i2c->D;
(void)dummy;
/* Wait until the ISR signals back */
TRACE("i2c: read C1=%02x S=%02x\n", (unsigned)i2c->C1, (unsigned)i2c->S);
thread_flags_t tflg = thread_flags_wait_any(THREAD_FLAG_KINETIS_I2C | THREAD_FLAG_TIMEOUT);
TRACE("i2c: rx done, %u left, ret: %d\n",
i2c_state[dev].rx.bytes_left, i2c_state[dev].retval);
if (!(tflg & THREAD_FLAG_KINETIS_I2C)) {
bit_clear8(&i2c->C1, I2C_C1_MST_SHIFT);
i2c_state[dev].active = 0;
return -ETIMEDOUT;
}
if (i2c_state[dev].retval < 0) {
/* An error occurred */
/* The module has been stopped from the ISR, no need to clear the MST bit */
return i2c_state[dev].retval;
}
}
if (!(flags & I2C_NOSTOP)) {
int res = i2c_stop(dev);
if (res < 0) {
return res;
}
}
return 0;
}
int i2c_write_bytes(i2c_t dev, uint16_t addr, const void *data, size_t len, uint8_t flags)
{
assert((data != NULL) || (len == 0));
I2C_Type *i2c = i2c_config[dev].i2c;
DEBUG("i2c: w a:%02x, l:%u, f:%02x\n", addr, (unsigned)len, (unsigned)flags);
if (!(flags & I2C_NOSTART)) {
int res = i2c_start(dev, addr, 0, flags);
if (res < 0) {
return res;
}
}
if (len > 0) {
/* We need IRQs enabled for interrupt based transfers */
assert(!__get_PRIMASK());
assert(!irq_is_in());
/* Configure IRQ transfer */
bit_set8(&i2c->C1, I2C_C1_TX_SHIFT);
i2c_state[dev].tx.datap = data;
i2c_state[dev].tx.bytes_left = len;
i2c_state[dev].retval = 0;
bit_set8(&i2c->C1, I2C_C1_IICIE_SHIFT);
TRACE("i2c: write C1=%02x S=%02x\n", (unsigned)i2c->C1, (unsigned)i2c->S);
/* Initiate transfer by writing the first byte, the remaining bytes will
* be fed by the ISR */
i2c->D = *((const uint8_t *)data);
/* Wait until the ISR signals back */
thread_flags_t tflg = thread_flags_wait_any(THREAD_FLAG_KINETIS_I2C | THREAD_FLAG_TIMEOUT);
TRACE("i2c: rx done, %u left, ret: %d\n",
i2c_state[dev].rx.bytes_left, i2c_state[dev].retval);
if (!(tflg & THREAD_FLAG_KINETIS_I2C)) {
bit_clear8(&i2c->C1, I2C_C1_MST_SHIFT);
i2c_state[dev].active = 0;
return -ETIMEDOUT;
}
if (i2c_state[dev].retval < 0) {
/* An error occurred */
/* The module has been stopped from the ISR, no need to clear the MST bit */
return i2c_state[dev].retval;
}
}
if (!(flags & I2C_NOSTOP)) {
int res = i2c_stop(dev);
if (res < 0) {
return res;
}
}
return 0;
}
static inline void i2c_irq_signal_done(I2C_Type *i2c, kernel_pid_t pid)
{
thread_flags_set((thread_t *)thread_get(pid), THREAD_FLAG_KINETIS_I2C);
bit_clear8(&i2c->C1, I2C_C1_IICIE_SHIFT);
}
/**
* @brief Master transmit mode IRQ handler
*/
static void i2c_irq_mst_tx_handler(I2C_Type *i2c, i2c_state_t *state, uint8_t S)
{
size_t len = state->tx.bytes_left;
assert(len != 0); /* This only happens if this periph driver is broken */
--len;
state->tx.bytes_left = len;
if (S & I2C_S_RXAK_MASK) {
/* NACK */
/* Abort master transfer */
DEBUG("i2c: NACK\n");
bit_clear8(&i2c->C1, I2C_C1_MST_SHIFT);
state->active = 0;
state->retval = -EIO;
i2c_irq_signal_done(i2c, state->pid);
}
else if (len == 0) {
/* We are done, NACK on the last byte is OK */
DEBUG("i2c: TX done\n");
i2c_irq_signal_done(i2c, state->pid);
}
else {
/* transmit the next byte */
/* Increment first, datap points to the last byte transmitted */
++state->tx.datap;
i2c->D = *state->tx.datap;
TRACE("i2c: tx: %02x\n", (unsigned)*(state->tx.datap));
}
}
/**
* @brief Master receive mode IRQ handler
*/
static void i2c_irq_mst_rx_handler(I2C_Type *i2c, i2c_state_t *state)
{
size_t len = state->rx.bytes_left;
assert(len != 0); /* This only happens if this periph driver is broken */
--len;
if (len == 1) {
/* Send NACK after the next byte */
bit_set8(&i2c->C1, I2C_C1_TXAK_SHIFT);
}
else if (len == 0) {
/* Switching the module to TX mode lets us read the data register
* without triggering a new reception */
bit_set8(&i2c->C1, I2C_C1_TX_SHIFT);
i2c_irq_signal_done(i2c, state->pid);
}
state->rx.bytes_left = len;
/* Read data reception buffer, this will trigger reception of the following
* byte iff TX and MST bits in the C1 register are set */
*state->rx.datap = i2c->D;
TRACE("i2c: rx: %02x\n", (unsigned)*(state->rx.datap));
++state->rx.datap;
}
void i2c_irq_handler(i2c_t dev)
{
I2C_Type *i2c = i2c_config[dev].i2c;
i2c_state_t *state = &i2c_state[dev];
uint8_t S = i2c->S;
/* Clear IRQ flags */
i2c->S = S;
if (i2c->C1 & I2C_C1_MST_MASK) {
/* Master mode handler */
if (S & I2C_S_ARBL_MASK) {
DEBUG("i2c: arbitration lost\n");
/* Abort master transfer */
bit_clear8(&i2c->C1, I2C_C1_MST_SHIFT);
state->active = 0;
state->retval = -EAGAIN;
i2c_irq_signal_done(i2c, state->pid);
}
if (i2c->C1 & I2C_C1_TX_MASK) {
/* Transmit mode */
i2c_irq_mst_tx_handler(i2c, state, S);
}
else {
/* Receive mode */
i2c_irq_mst_rx_handler(i2c, state);
}
}
else {
/* TODO: Slave mode handler goes here */
}
cortexm_isr_end();
}
#ifdef I2C_0_ISR
void I2C_0_ISR(void)
{
i2c_irq_handler(I2C_DEV(0));
}
#endif /* I2C_0_ISR */
#ifdef I2C_1_ISR
void I2C_1_ISR(void)
{
i2c_irq_handler(I2C_DEV(1));
}
#endif /* I2C_1_ISR */