1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/stm32/periph/gpio_ll_irq.c
Joshua DeWeese aef5dfec2b cpu/stm32/gpio_ll: make style consistent
This block of code inconsistently made use of else-if statments. The
patch makes the use consistent. The change also makes the code a bit
simpler to read.
2024-04-02 11:51:20 -04:00

310 lines
8.5 KiB
C

/*
* Copyright (C) 2014-2015 Freie Universität Berlin
* 2015 Hamburg University of Applied Sciences
* 2017-2020 Inria
* 2017 OTA keys S.A.
* 2021 Otto-von-Guericke-Universität Magdeburg
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32
* @ingroup drivers_periph_gpio_ll_irq
* @{
*
* @file
* @brief IRQ implementation of the GPIO Low-Level API for STM32
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Fabian Nack <nack@inf.fu-berlin.de>
* @author Alexandre Abadie <alexandre.abadie@inria.fr>
* @author Katja Kirstein <katja.kirstein@haw-hamburg.de>
* @author Vincent Dupont <vincent@otakeys.com>
* @author Marian Buschsieweke <marian.buschsieweke@ovgu.de>
*
* @}
*/
#include <errno.h>
#include "cpu.h"
#include "bitarithm.h"
#include "periph/gpio_ll_irq.h"
#define ENABLE_DEBUG 0
#include "debug.h"
#define EXTI_NUMOF (16U)
#define EXTI_MASK (0xFFFF)
#if defined(EXTI_SWIER_SWI0) || defined(EXTI_SWIER_SWIER0)
# define EXTI_REG_SWIER (EXTI->SWIER)
#elif defined(EXTI_SWIER1_SWI0) || defined(EXTI_SWIER1_SWIER0)
# define EXTI_REG_SWIER (EXTI->SWIER1)
#endif
#if defined(EXTI_RTSR_RT0) || defined(EXTI_RTSR_TR0)
# define EXTI_REG_RTSR (EXTI->RTSR)
#elif defined(EXTI_RTSR1_RT0) || defined(EXTI_RTSR1_TR0)
# define EXTI_REG_RTSR (EXTI->RTSR1)
#endif
#if defined(EXTI_FTSR_FT0) || defined(EXTI_FTSR_TR0)
# define EXTI_REG_FTSR (EXTI->FTSR)
#elif defined(EXTI_FTSR1_FT0) || defined (EXTI_FTSR1_TR0)
# define EXTI_REG_FTSR (EXTI->FTSR1)
#endif
#if defined(EXTI_PR_PR0)
# define EXTI_REG_PR (EXTI->PR)
#elif defined(EXTI_PR1_PIF0)
# define EXTI_REG_PR (EXTI->PR1)
#else
# define EXTI_REG_FPR (EXTI->FPR1)
# define EXTI_REG_RPR (EXTI->RPR1)
#endif
#if defined(EXTI_C2_BASE)
# define EXTI_REG_IMR (EXTI_C2->IMR1)
#elif defined(EXTI_IMR_IM0)
# define EXTI_REG_IMR (EXTI->IMR)
#elif defined(EXTI_IMR1_IM0)
# define EXTI_REG_IMR (EXTI->IMR1)
#endif
#if defined(RCC_APB2ENR_SYSCFGCOMPEN)
# define SYSFG_CLOCK APB2
# define SYSFG_ENABLE_MASK RCC_APB2ENR_SYSCFGCOMPEN
#elif defined(RCC_APB2ENR_SYSCFGEN)
# define SYSFG_CLOCK APB2
# define SYSFG_ENABLE_MASK RCC_APB2ENR_SYSCFGEN
#elif defined(RCC_APB3ENR_SYSCFGEN)
# define SYSFG_CLOCK APB3
# define SYSFG_ENABLE_MASK RCC_APB3ENR_SYSCFGEN
#endif
#if defined(EXTI_EXTICR1_EXTI0)
# define EXTICR_REG(num) (EXTI->EXTICR[(num) >> 2])
#elif defined(SYSCFG_EXTICR1_EXTI0)
# define EXTICR_REG(num) (SYSCFG->EXTICR[(num) >> 2])
#elif defined(AFIO_EXTICR1_EXTI0)
# define EXTICR_REG(num) (AFIO->EXTICR[(num) >> 2])
#endif
#if defined(SYSCFG_EXTICR1_EXTI1_Pos)
# define EXTICR_FIELD_SIZE SYSCFG_EXTICR1_EXTI1_Pos
#elif defined(EXTI_EXTICR1_EXTI1_Pos)
# define EXTICR_FIELD_SIZE EXTI_EXTICR1_EXTI1_Pos
#elif defined(AFIO_EXTICR1_EXTI1_Pos)
# define EXTICR_FIELD_SIZE AFIO_EXTICR1_EXTI1_Pos
#endif
void gpio_ll_irq_mask(gpio_port_t port, uint8_t pin)
{
(void)port;
EXTI_REG_IMR &= ~(1 << pin);
}
void gpio_ll_irq_unmask_and_clear(gpio_port_t port, uint8_t pin)
{
(void)port;
EXTI_REG_IMR |= (1 << pin);
}
struct isr_ctx {
gpio_ll_cb_t cb;
void *arg;
};
static struct isr_ctx isr_ctx[EXTI_NUMOF];
static uint16_t level_triggered;
static IRQn_Type get_irqn(uint8_t pin)
{
/* TODO: Come up with a way that this doesn't need updates whenever a new
* MCU family gets added */
#if defined(CPU_FAM_STM32L5) || defined(CPU_FAM_STM32U5)
return EXTI0_IRQn + pin;
#elif defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32L0) || \
defined(CPU_FAM_STM32G0) || defined(CPU_FAM_STM32C0)
if (pin < 2) {
return EXTI0_1_IRQn;
}
else if (pin < 4) {
return EXTI2_3_IRQn;
}
else {
return EXTI4_15_IRQn;
}
#elif defined(CPU_FAM_STM32MP1)
if (pin < 5) {
return EXTI0_IRQn + pin;
}
else if (pin < 6) {
return EXTI5_IRQn;
}
else if (pin < 10) {
return EXTI6_IRQn + pin - 6;
}
else if (pin < 11) {
return EXTI10_IRQn;
}
else if (pin < 12) {
return EXTI11_IRQn;
}
else if (pin < 14) {
return EXTI12_IRQn + pin - 12;
}
else if (pin < 15) {
return EXTI14_IRQn;
}
else {
return EXTI15_IRQn;
}
#else
if (pin < 5) {
return EXTI0_IRQn + pin;
}
else if (pin < 10) {
return EXTI9_5_IRQn;
}
else {
return EXTI15_10_IRQn;
}
#endif
}
static void clear_pending_irqs(uint8_t pin)
{
#ifdef EXTI_REG_PR
/* same IRQ flag no matter if falling or rising edge detected */
EXTI_REG_PR = (1U << pin);
#else
/* distinct IRQ flags for falling and rising edge, clearing both */
EXTI_REG_FPR = (1U << pin);
EXTI_REG_RPR = (1U << pin);
#endif
}
static void set_exti_port(uint8_t exti_num, uint8_t port_num)
{
uint32_t tmp = EXTICR_REG(exti_num);
tmp &= ~(0xf << ((exti_num & 0x03) * EXTICR_FIELD_SIZE));
tmp |= (port_num << ((exti_num & 0x03) * EXTICR_FIELD_SIZE));
EXTICR_REG(exti_num) = tmp;
}
static uint8_t get_exti_port(uint8_t exti_num)
{
uint32_t reg = EXTICR_REG(exti_num);
reg >>= (exti_num & 0x03) * EXTICR_FIELD_SIZE;
return reg & 0xf;
}
int gpio_ll_irq(gpio_port_t port, uint8_t pin, gpio_irq_trig_t trig, gpio_ll_cb_t cb, void *arg)
{
unsigned irq_state = irq_disable();
int port_num = GPIO_PORT_NUM(port);
/* set callback */
isr_ctx[pin].cb = cb;
isr_ctx[pin].arg = arg;
/* enable clock of the SYSCFG module for EXTI configuration */
#ifdef SYSFG_CLOCK
periph_clk_en(SYSFG_CLOCK, SYSFG_ENABLE_MASK);
#endif
/* enable global pin interrupt */
NVIC_EnableIRQ(get_irqn(pin));
/* configure trigger */
if (trig & GPIO_TRIGGER_EDGE_RISING) {
EXTI_REG_RTSR |= 1UL << pin;
}
else {
EXTI_REG_RTSR &= ~(1UL << pin);
}
if (trig & GPIO_TRIGGER_EDGE_FALLING) {
EXTI_REG_FTSR |= 1UL << pin;
}
else {
EXTI_REG_FTSR &= ~(1UL << pin);
}
set_exti_port(pin, port_num);
clear_pending_irqs(pin);
gpio_ll_irq_unmask_and_clear(port, pin);
if (trig & GPIO_TRIGGER_LEVEL) {
level_triggered |= 1UL << pin;
/* if input is already at trigger level there might be no flank, so issue soft IRQ */
uint32_t actual_level = gpio_ll_read(port) & (1UL << pin);
uint32_t trigger_level = EXTI_REG_RTSR & (1UL << pin);
if (actual_level == trigger_level) {
EXTI_REG_SWIER = 1UL << pin;
}
}
else {
level_triggered &= ~(1UL << pin);
}
irq_restore(irq_state);
return 0;
}
static uint32_t get_and_clear_pending_irqs(void)
{
#ifdef EXTI_REG_PR
/* only one pending IRQ flag register for both falling and rising flanks */
uint32_t pending_isr = (EXTI_REG_PR & EXTI_MASK);
/* clear by writing a 1 */
EXTI_REG_PR = pending_isr;
return pending_isr;
#else
/* distinct registers for pending IRQ flags depending on rising or falling
* flank */
uint32_t pending_rising_isr = (EXTI_REG_RPR & EXTI_MASK);
uint32_t pending_falling_isr = (EXTI_REG_FPR & EXTI_MASK);
/* clear by writing a 1 */
EXTI->RPR1 = pending_rising_isr;
EXTI->FPR1 = pending_falling_isr;
return pending_rising_isr | pending_falling_isr;
#endif
}
void isr_exti(void)
{
uint32_t pending_isr = get_and_clear_pending_irqs();
/* only generate soft interrupts against lines which have their IMR set */
pending_isr &= EXTI_REG_IMR;
/* iterate over all set bits */
uint8_t pin = 0;
while (pending_isr) {
pending_isr = bitarithm_test_and_clear(pending_isr, &pin);
isr_ctx[pin].cb(isr_ctx[pin].arg);
/* emulate level triggered IRQs by asserting the IRQ again in software, if needed */
if (level_triggered & (1UL << pin)) {
/* Trading a couple of CPU cycles to not having to store port connected to EXTI in RAM.
* A simple look up table would save ~6 instructions for the cost 64 bytes of RAM. */
gpio_port_t port = GPIO_PORT(get_exti_port(pin));
uint32_t actual_level = gpio_ll_read(port) & (1UL << pin);
uint32_t trigger_level = EXTI_REG_RTSR & (1UL << pin);
if (actual_level == trigger_level) {
EXTI_REG_SWIER = 1UL << pin;
}
}
}
cortexm_isr_end();
}