1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/drivers/at86rf2xx/at86rf2xx.c
2021-07-09 10:08:45 +02:00

330 lines
11 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (C) 2013 Alaeddine Weslati <alaeddine.weslati@inria.fr>
* Copyright (C) 2015 Freie Universität Berlin
* 2017 HAW Hamburg
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup drivers_at86rf2xx
* @{
*
* @file
* @brief Implementation of public functions for AT86RF2xx drivers
*
* @author Alaeddine Weslati <alaeddine.weslati@inria.fr>
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Kaspar Schleiser <kaspar@schleiser.de>
* @author Oliver Hahm <oliver.hahm@inria.fr>
* @author Sebastian Meiling <s@mlng.net>
* @}
*/
#include "kernel_defines.h"
#include "byteorder.h"
#include "net/ieee802154.h"
#if IS_USED(IEEE802154_SECURITY)
#include "net/ieee802154_security.h"
#endif
#include "net/gnrc.h"
#include "at86rf2xx_registers.h"
#include "at86rf2xx_internal.h"
#include "at86rf2xx_netdev.h"
#if IS_USED(MODULE_AT86RF2XX_AES_SPI)
#include "at86rf2xx_aes.h"
#endif
#define ENABLE_DEBUG 0
#include "debug.h"
#if IS_USED(MODULE_AT86RF2XX_AES_SPI) && \
IS_USED(MODULE_IEEE802154_SECURITY)
/**
* @brief Pass the 802.15.4 encryption key to the transceiver hardware
*
* @param[in] dev Abstract security device descriptor
* @param[in] key Encryption key to be used
* @param[in] key_size Size of the encryption key in bytes
*/
static void _at86rf2xx_set_key(ieee802154_sec_dev_t *dev,
const uint8_t *key, uint8_t key_size)
{
(void)key_size;
at86rf2xx_aes_key_write_encrypt((at86rf2xx_t *)dev->ctx, key);
}
/**
* @brief Compute CBC-MAC from IEEE 802.15.4 security context
*
* @param[in] dev Abstract security device descriptor
* @param[out] cipher Buffer to store cipher blocks
* @param[in] iv Initial vector
* @param[in] plain Input data blocks
* @param[in] nblocks Number of blocks
*/
static void _at86rf2xx_cbc(const ieee802154_sec_dev_t *dev,
uint8_t *cipher,
uint8_t *iv,
const uint8_t *plain,
uint8_t nblocks)
{
at86rf2xx_aes_cbc_encrypt((at86rf2xx_t *)dev->ctx,
(aes_block_t *)cipher,
NULL,
iv,
(aes_block_t *)plain,
nblocks);
}
/**
* @brief Perform ECB encryption
*
* @param[in] dev Abstract security device descriptor
* @param[out] cipher Output cipher blocks
* @param[in] plain Plain blocks
* @param[in] nblocks Number of blocks
*/
static void _at86rf2xx_ecb(const ieee802154_sec_dev_t *dev,
uint8_t *cipher,
const uint8_t *plain,
uint8_t nblocks)
{
at86rf2xx_aes_ecb_encrypt((at86rf2xx_t *)dev->ctx,
(aes_block_t *)cipher,
NULL,
(aes_block_t *)plain,
nblocks);
}
/**
* @brief Struct that contains IEEE 802.15.4 security operations
* which are implemented, using the transceiver´s hardware
* crypto capabilities
*/
static const ieee802154_radio_cipher_ops_t _at86rf2xx_cipher_ops = {
.set_key = _at86rf2xx_set_key,
.ecb = _at86rf2xx_ecb,
.cbc = _at86rf2xx_cbc
};
#endif /* IS_USED(MODULE_AT86RF2XX_AES_SPI) && \
IS_USED(MODULE_IEEE802154_SECURITY) */
void at86rf2xx_setup(at86rf2xx_t *dev, const at86rf2xx_params_t *params, uint8_t index)
{
netdev_t *netdev = &dev->netdev.netdev;
netdev->driver = &at86rf2xx_driver;
/* State to return after receiving or transmitting */
dev->idle_state = AT86RF2XX_STATE_TRX_OFF;
/* radio state is P_ON when first powered-on */
dev->state = AT86RF2XX_STATE_P_ON;
dev->pending_tx = 0;
#if defined(MODULE_AT86RFA1) || defined(MODULE_AT86RFR2)
(void) params;
/* set all interrupts off */
at86rf2xx_reg_write(dev, AT86RF2XX_REG__IRQ_MASK, 0x00);
#else
/* initialize device descriptor */
dev->params = *params;
#endif
netdev_register(netdev, NETDEV_AT86RF2XX, index);
/* set device address */
netdev_ieee802154_setup(&dev->netdev);
}
static void at86rf2xx_disable_clock_output(at86rf2xx_t *dev)
{
#if defined(MODULE_AT86RFA1) || defined(MODULE_AT86RFR2)
(void) dev;
#else
uint8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__TRX_CTRL_0);
tmp &= ~(AT86RF2XX_TRX_CTRL_0_MASK__CLKM_CTRL);
tmp &= ~(AT86RF2XX_TRX_CTRL_0_MASK__CLKM_SHA_SEL);
tmp |= (AT86RF2XX_TRX_CTRL_0_CLKM_CTRL__OFF);
at86rf2xx_reg_write(dev, AT86RF2XX_REG__TRX_CTRL_0, tmp);
#endif
}
static void at86rf2xx_enable_smart_idle(at86rf2xx_t *dev)
{
#if AT86RF2XX_SMART_IDLE_LISTENING
uint8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__TRX_RPC);
tmp |= (AT86RF2XX_TRX_RPC_MASK__RX_RPC_EN |
AT86RF2XX_TRX_RPC_MASK__PDT_RPC_EN |
AT86RF2XX_TRX_RPC_MASK__PLL_RPC_EN |
AT86RF2XX_TRX_RPC_MASK__XAH_TX_RPC_EN |
AT86RF2XX_TRX_RPC_MASK__IPAN_RPC_EN);
at86rf2xx_reg_write(dev, AT86RF2XX_REG__TRX_RPC, tmp);
at86rf2xx_set_rxsensitivity(dev, RSSI_BASE_VAL);
#else
(void) dev;
#endif
}
void at86rf2xx_reset(at86rf2xx_t *dev)
{
uint8_t tmp;
netdev_ieee802154_reset(&dev->netdev);
/* Reset state machine to ensure a known state */
if (dev->state == AT86RF2XX_STATE_P_ON) {
at86rf2xx_set_state(dev, AT86RF2XX_STATE_FORCE_TRX_OFF);
}
/* set short and long address */
at86rf2xx_set_addr_long(dev, (eui64_t *)dev->netdev.long_addr);
at86rf2xx_set_addr_short(dev, (network_uint16_t *)dev->netdev.short_addr);
/* set default channel */
at86rf2xx_set_chan(dev, AT86RF2XX_DEFAULT_CHANNEL);
/* set default TX power */
at86rf2xx_set_txpower(dev, AT86RF2XX_DEFAULT_TXPOWER);
/* set default options */
if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) {
at86rf2xx_set_option(dev, AT86RF2XX_OPT_AUTOACK, true);
at86rf2xx_set_option(dev, AT86RF2XX_OPT_CSMA, true);
static const netopt_enable_t enable = NETOPT_ENABLE;
netdev_ieee802154_set(&dev->netdev, NETOPT_ACK_REQ,
&enable, sizeof(enable));
}
/* enable safe mode (protect RX FIFO until reading data starts) */
at86rf2xx_reg_write(dev, AT86RF2XX_REG__TRX_CTRL_2,
AT86RF2XX_TRX_CTRL_2_MASK__RX_SAFE_MODE);
#ifdef MODULE_AT86RF212B
at86rf2xx_set_page(dev, AT86RF2XX_DEFAULT_PAGE);
#endif
#if !defined(MODULE_AT86RFA1) && !defined(MODULE_AT86RFR2)
/* don't populate masked interrupt flags to IRQ_STATUS register */
tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__TRX_CTRL_1);
tmp &= ~(AT86RF2XX_TRX_CTRL_1_MASK__IRQ_MASK_MODE);
at86rf2xx_reg_write(dev, AT86RF2XX_REG__TRX_CTRL_1, tmp);
#endif
/* configure smart idle listening feature */
at86rf2xx_enable_smart_idle(dev);
/* disable clock output to save power */
at86rf2xx_disable_clock_output(dev);
/* enable interrupts */
at86rf2xx_reg_write(dev, AT86RF2XX_REG__IRQ_MASK,
AT86RF2XX_IRQ_STATUS_MASK__TRX_END);
/* enable TX start interrupt for retry counter */
#ifdef AT86RF2XX_REG__IRQ_MASK1
at86rf2xx_reg_write(dev, AT86RF2XX_REG__IRQ_MASK1,
AT86RF2XX_IRQ_STATUS_MASK1__TX_START);
#endif
/* clear interrupt flags */
at86rf2xx_reg_read(dev, AT86RF2XX_REG__IRQ_STATUS);
#if IS_USED(MODULE_IEEE802154_SECURITY) && \
IS_USED(MODULE_AT86RF2XX_AES_SPI)
dev->netdev.sec_ctx.dev.cipher_ops = &_at86rf2xx_cipher_ops;
dev->netdev.sec_ctx.dev.ctx = dev;
#endif
/* State to return after receiving or transmitting */
dev->idle_state = AT86RF2XX_PHY_STATE_RX;
/* go into RX state */
at86rf2xx_set_state(dev, AT86RF2XX_PHY_STATE_RX);
/* Enable RX start IRQ */
tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__IRQ_MASK);
tmp |= AT86RF2XX_IRQ_STATUS_MASK__RX_START;
at86rf2xx_reg_write(dev, AT86RF2XX_REG__IRQ_MASK, tmp);
DEBUG("at86rf2xx_reset(): reset complete.\n");
}
size_t at86rf2xx_send(at86rf2xx_t *dev, const uint8_t *data, size_t len)
{
/* check data length */
if (len > AT86RF2XX_MAX_PKT_LENGTH) {
DEBUG("[at86rf2xx] Error: data to send exceeds max packet size\n");
return 0;
}
at86rf2xx_tx_prepare(dev);
at86rf2xx_tx_load(dev, data, len, 0);
at86rf2xx_tx_exec(dev);
return len;
}
void at86rf2xx_tx_prepare(at86rf2xx_t *dev)
{
uint8_t state;
dev->pending_tx++;
state = at86rf2xx_set_state(dev, AT86RF2XX_PHY_STATE_TX);
if (state != AT86RF2XX_PHY_STATE_TX) {
dev->idle_state = state;
}
dev->tx_frame_len = IEEE802154_FCS_LEN;
}
size_t at86rf2xx_tx_load(at86rf2xx_t *dev, const uint8_t *data,
size_t len, size_t offset)
{
dev->tx_frame_len += (uint8_t)len;
at86rf2xx_sram_write(dev, offset + 1, data, len);
return offset + len;
}
void at86rf2xx_tx_exec(at86rf2xx_t *dev)
{
netdev_t *netdev = &dev->netdev.netdev;
#if AT86RF2XX_HAVE_RETRIES
dev->tx_retries = -1;
#endif
/* write frame length field in FIFO */
at86rf2xx_sram_write(dev, 0, &(dev->tx_frame_len), 1);
/* trigger sending of pre-loaded frame */
at86rf2xx_reg_write(dev, AT86RF2XX_REG__TRX_STATE,
AT86RF2XX_TRX_STATE__TX_START);
if (netdev->event_callback) {
netdev->event_callback(netdev, NETDEV_EVENT_TX_STARTED);
}
}
bool at86rf2xx_cca(at86rf2xx_t *dev)
{
uint8_t reg;
uint8_t old_state = at86rf2xx_set_state(dev, AT86RF2XX_STATE_TRX_OFF);
/* Disable RX path */
uint8_t rx_syn = at86rf2xx_reg_read(dev, AT86RF2XX_REG__RX_SYN);
reg = rx_syn | AT86RF2XX_RX_SYN__RX_PDT_DIS;
at86rf2xx_reg_write(dev, AT86RF2XX_REG__RX_SYN, reg);
/* Manually triggered CCA is only possible in RX_ON (basic operating mode) */
at86rf2xx_set_state(dev, AT86RF2XX_STATE_RX_ON);
/* Perform CCA */
reg = at86rf2xx_reg_read(dev, AT86RF2XX_REG__PHY_CC_CCA);
reg |= AT86RF2XX_PHY_CC_CCA_MASK__CCA_REQUEST;
at86rf2xx_reg_write(dev, AT86RF2XX_REG__PHY_CC_CCA, reg);
/* Spin until done (8 symbols + 12 µs = 128 µs + 12 µs for O-QPSK)*/
do {
reg = at86rf2xx_reg_read(dev, AT86RF2XX_REG__TRX_STATUS);
} while ((reg & AT86RF2XX_TRX_STATUS_MASK__CCA_DONE) == 0);
/* return true if channel is clear */
bool ret = !!(reg & AT86RF2XX_TRX_STATUS_MASK__CCA_STATUS);
/* re-enable RX */
at86rf2xx_reg_write(dev, AT86RF2XX_REG__RX_SYN, rx_syn);
/* Step back to the old state */
at86rf2xx_set_state(dev, AT86RF2XX_STATE_TRX_OFF);
at86rf2xx_set_state(dev, old_state);
return ret;
}