1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-15 18:52:45 +01:00
RIOT/cpu/stm32/periph/rtc_f1.c
2020-05-21 11:43:25 +02:00

262 lines
5.8 KiB
C

/*
* Copyright (C) 2019 Alexei Bezborodov
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_stm32
* @{
* @file
* @brief Low-level RTC driver implementation for STM32F1
*
* @author Alexei Bezborodov <alexeibv+riotos@narod.ru>
* @}
*/
#include <time.h>
#include "cpu.h"
#include "periph/rtc.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
#define EXTI_IMR_BIT (EXTI_IMR_MR17)
#define EXTI_FTSR_BIT (EXTI_FTSR_TR17)
#define EXTI_RTSR_BIT (EXTI_RTSR_TR17)
#define EXTI_PR_BIT (EXTI_PR_PR17)
static struct {
rtc_alarm_cb_t cb; /**< callback called from RTC interrupt */
void *arg; /**< argument passed to the callback */
} isr_ctx;
static void _rtc_enter_config_mode(void)
{
/* disable backup domain write protection */
PWR->CR |= PWR_CR_DBP;
/* wait until the RTOFF bit is 1 (no RTC register writes ongoing). */
while ((RTC->CRL & RTC_CRL_RTOFF) == 0) {}
/* enter configuration mode. */
RTC->CRL |= RTC_CRL_CNF;
}
static void _rtc_exit_config_mode(void)
{
/* exit configuration mode. */
RTC->CRL &= ~RTC_CRL_CNF;
/* wait until the RTOFF bit is 1 (our RTC register write finished). */
while ((RTC->CRL & RTC_CRL_RTOFF) == 0) {}
/* disable backup domain write protection */
PWR->CR &= ~PWR_CR_DBP;
}
static bool _is_rtc_enable(void)
{
return ((RCC->BDCR & RCC_BDCR_RTCEN) == RCC_BDCR_RTCEN);
}
static void _rtc_config(void)
{
DEBUG("[RTC] config\n");
/* enable APB1 clocks */
RCC->APB1ENR |= RCC_APB1ENR_PWREN | RCC_APB1ENR_BKPEN;
/* disable backup domain write protection */
PWR->CR |= PWR_CR_DBP;
/* resets the entire backup domain */
RCC->BDCR |= RCC_BDCR_BDRST;
/* reset not activated */
RCC->BDCR &= ~RCC_BDCR_BDRST;
/* oscillator clock used as RTC clock */
RCC->BDCR |= RCC_BDCR_RTCEN | RCC_BDCR_RTCSEL_LSE;
/* turn on LSE crystal */
RCC->BDCR |= RCC_BDCR_LSEON;
while ((RCC->BDCR & RCC_BDCR_LSEON) != RCC_BDCR_LSEON) {}
/* calibration clock from 0 to 0x7F */
BKP->RTCCR |= 0;
/* second interrupt is disabled. */
RTC->CRH &= ~RTC_CRH_SECIE;
_rtc_enter_config_mode();
/* if the input clock frequency (fRTCCLK) is 32.768 kHz, write 7FFFh in this register to get a signal period of 1 second. */
RTC->PRLH = 0;
RTC->PRLL = 0x7FFF;
_rtc_exit_config_mode();
/* wait registers synchronize flag */
RTC->CRL &= (uint16_t)~RTC_CRL_RSF;
while((RTC->CRL & RTC_CRL_RSF) != RTC_CRL_RSF) {}
/* disable backup domain write protection */
PWR->CR &= ~PWR_CR_DBP;
/* configure the EXTI channel, as RTC interrupts are routed through it.
* Needs to be configured to trigger on rising edges. */
EXTI->FTSR &= ~(EXTI_FTSR_BIT);
EXTI->RTSR |= EXTI_RTSR_BIT;
EXTI->IMR |= EXTI_IMR_BIT;
EXTI->PR |= EXTI_PR_BIT;
/* enable global RTC interrupt */
NVIC_EnableIRQ(RTC_Alarm_IRQn);
}
static uint32_t _rtc_get_time(void)
{
return (RTC->CNTH << 16) | RTC->CNTL;
}
static void _rtc_set_time(uint32_t counter_val)
{
_rtc_enter_config_mode();
RTC->CNTH = (counter_val & 0xffff0000) >> 16;
RTC->CNTL = counter_val & 0x0000ffff;
_rtc_exit_config_mode();
}
void rtc_init(void)
{
/* save current time if RTC already works */
bool is_rtc_enable = _is_rtc_enable();
uint32_t cur_time = 0;
if (is_rtc_enable) {
cur_time = _rtc_get_time();
}
/* config RTC */
_rtc_config();
/* restore current time after config */
if (is_rtc_enable) {
_rtc_set_time(cur_time);
}
}
int rtc_set_time(struct tm *time)
{
uint32_t timestamp = rtc_mktime(time);
_rtc_set_time(timestamp);
DEBUG("%s timestamp=%"PRIu32"\n", __func__, timestamp);
return 0;
}
int rtc_get_time(struct tm *time)
{
uint32_t timestamp = _rtc_get_time();
rtc_localtime(timestamp, time);
DEBUG("%s timestamp=%"PRIu32"\n", __func__, timestamp);
return 0;
}
static void _rtc_enable_alarm(void)
{
/* clear alarm flag */
RTC->CRL &= ~RTC_CRL_ALRF;
_rtc_enter_config_mode();
RTC->CRH |= (RTC_CRH_ALRIE);
_rtc_exit_config_mode();
}
static void _rtc_disable_alarm(void)
{
_rtc_enter_config_mode();
RTC->CRH &= ~RTC_CRH_ALRIE;
_rtc_exit_config_mode();
}
static uint32_t _rtc_get_alarm_time(void)
{
return (RTC->ALRH << 16) | RTC->ALRL;
}
static void _rtc_set_alarm_time(uint32_t alarm_time)
{
_rtc_enter_config_mode();
RTC->ALRL = (alarm_time & 0x0000ffff);
RTC->ALRH = (alarm_time & 0xffff0000) >> 16;
_rtc_exit_config_mode();
}
int rtc_set_alarm(struct tm *time, rtc_alarm_cb_t cb, void *arg)
{
uint32_t timestamp = rtc_mktime(time);
/* disable existing alarm (if enabled) */
rtc_clear_alarm();
/* save callback and argument */
isr_ctx.cb = cb;
isr_ctx.arg = arg;
/* set wakeup time */
_rtc_set_alarm_time(timestamp);
/* enable Alarm */
_rtc_enable_alarm();
DEBUG("%s timestamp=%"PRIu32"\n", __func__, timestamp);
return 0;
}
int rtc_get_alarm(struct tm *time)
{
uint32_t timestamp = _rtc_get_alarm_time();
rtc_localtime(timestamp, time);
DEBUG("%s timestamp=%"PRIu32"\n", __func__, timestamp);
return 0;
}
void rtc_clear_alarm(void)
{
_rtc_disable_alarm();
isr_ctx.cb = NULL;
isr_ctx.arg = NULL;
}
void rtc_poweron(void)
{
/* RTC is always on */
return;
}
void rtc_poweroff(void)
{
/* RTC is always on */
return;
}
void isr_rtc_alarm(void)
{
if (RTC->CRL & RTC_CRL_ALRF) {
if (isr_ctx.cb != NULL) {
isr_ctx.cb(isr_ctx.arg);
}
RTC->CRL &= ~RTC_CRL_ALRF;
}
EXTI->PR |= EXTI_PR_BIT;
cortexm_isr_end();
}