1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/drivers/mpu9x50/mpu9x50.c
Marian Buschsieweke edc43201db
tree-wide: fix typos in doc and comments
This should not change any generated binary
2023-10-16 12:17:48 +02:00

580 lines
18 KiB
C

/*
* Copyright (C) 2015 Freie Universität Berlin
* 2019 HAW Hamburg
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup drivers_mpu9x50
* @{
*
* @file
* @brief Device driver implementation for the MPU-9X50 (MPU9150 and MPU9250) 9-Axis Motion Sensor
*
* @author Fabian Nack <nack@inf.fu-berlin.de>
* @author Jannes Volkens <jannes.volkens@haw-hamburg.de>
*
* @}
*/
#include "mpu9x50.h"
#include "mpu9x50_regs.h"
#include "mpu9x50_internal.h"
#include "periph/i2c.h"
#include "ztimer.h"
#include "byteorder.h"
#define ENABLE_DEBUG 0
#include "debug.h"
#define REG_RESET (0x00)
#define MAX_VALUE (0x7FFF)
#define DEV_I2C (dev->params.i2c)
#define DEV_ADDR (dev->params.addr)
#define DEV_COMP_ADDR (dev->params.comp_addr)
/* Default config settings */
static const mpu9x50_status_t DEFAULT_STATUS = {
.accel_pwr = MPU9X50_SENSOR_PWR_ON,
.gyro_pwr = MPU9X50_SENSOR_PWR_ON,
.compass_pwr = MPU9X50_SENSOR_PWR_ON,
.gyro_fsr = MPU9X50_GYRO_FSR_250DPS,
.accel_fsr = MPU9X50_ACCEL_FSR_16G,
.sample_rate = 0,
.compass_sample_rate = 0,
.compass_x_adj = 0,
.compass_y_adj = 0,
.compass_z_adj = 0,
};
/* Internal function prototypes */
static int compass_init(mpu9x50_t *dev);
static void conf_bypass(const mpu9x50_t *dev, uint8_t bypass_enable);
static void conf_lpf(const mpu9x50_t *dev, uint16_t rate);
/*---------------------------------------------------------------------------*
* MPU9X50 Core API *
*---------------------------------------------------------------------------*/
int mpu9x50_init(mpu9x50_t *dev, const mpu9x50_params_t *params)
{
dev->params = *params;
uint8_t temp;
dev->conf = DEFAULT_STATUS;
/* Acquire exclusive access */
i2c_acquire(DEV_I2C);
/* Reset MPU9X50 registers and afterwards wake up the chip */
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_PWR_MGMT_1_REG, MPU9X50_PWR_RESET, 0);
ztimer_sleep(ZTIMER_MSEC, MPU9X50_RESET_SLEEP_MS);
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_PWR_MGMT_1_REG, MPU9X50_PWR_WAKEUP, 0);
/* Release the bus, it is acquired again inside each function */
i2c_release(DEV_I2C);
/* Set default full scale ranges and sample rate */
mpu9x50_set_gyro_fsr(dev, MPU9X50_GYRO_FSR_2000DPS);
mpu9x50_set_accel_fsr(dev, MPU9X50_ACCEL_FSR_2G);
mpu9x50_set_sample_rate(dev, dev->params.sample_rate);
/* Disable interrupt generation */
i2c_acquire(DEV_I2C);
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_INT_ENABLE_REG, REG_RESET, 0);
/* Initialize magnetometer */
if (compass_init(dev)) {
i2c_release(DEV_I2C);
return -2;
}
/* Release the bus, it is acquired again inside each function */
i2c_release(DEV_I2C);
mpu9x50_set_compass_sample_rate(dev, 10);
/* Enable all sensors */
i2c_acquire(DEV_I2C);
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_PWR_MGMT_1_REG, MPU9X50_PWR_PLL, 0);
i2c_read_reg(DEV_I2C, DEV_ADDR, MPU9X50_PWR_MGMT_2_REG, &temp, 0);
temp &= ~(MPU9X50_PWR_ACCEL | MPU9X50_PWR_GYRO);
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_PWR_MGMT_2_REG, temp, 0);
i2c_release(DEV_I2C);
ztimer_sleep(ZTIMER_MSEC, MPU9X50_PWR_CHANGE_SLEEP_MS);
return 0;
}
int mpu9x50_set_accel_power(mpu9x50_t *dev, mpu9x50_pwr_t pwr_conf)
{
uint8_t pwr_1_setting, pwr_2_setting;
if (dev->conf.accel_pwr == pwr_conf) {
return 0;
}
/* Acquire exclusive access */
i2c_acquire(DEV_I2C);
/* Read current power management 2 configuration */
i2c_read_reg(DEV_I2C, DEV_ADDR, MPU9X50_PWR_MGMT_2_REG, &pwr_2_setting, 0);
/* Prepare power register settings */
if (pwr_conf == MPU9X50_SENSOR_PWR_ON) {
pwr_1_setting = MPU9X50_PWR_WAKEUP;
pwr_2_setting &= ~(MPU9X50_PWR_ACCEL);
}
else {
pwr_1_setting = BIT_PWR_MGMT1_SLEEP;
pwr_2_setting |= MPU9X50_PWR_ACCEL;
}
/* Configure power management 1 register if needed */
if ((dev->conf.gyro_pwr == MPU9X50_SENSOR_PWR_OFF)
&& (dev->conf.compass_pwr == MPU9X50_SENSOR_PWR_OFF)) {
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_PWR_MGMT_1_REG, pwr_1_setting, 0);
}
/* Enable/disable accelerometer standby in power management 2 register */
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_PWR_MGMT_2_REG, pwr_2_setting, 0);
/* Release the bus */
i2c_release(DEV_I2C);
dev->conf.accel_pwr = pwr_conf;
ztimer_sleep(ZTIMER_MSEC, MPU9X50_PWR_CHANGE_SLEEP_MS);
return 0;
}
int mpu9x50_set_gyro_power(mpu9x50_t *dev, mpu9x50_pwr_t pwr_conf)
{
uint8_t pwr_2_setting;
if (dev->conf.gyro_pwr == pwr_conf) {
return 0;
}
/* Acquire exclusive access */
i2c_acquire(DEV_I2C);
/* Read current power management 2 configuration */
i2c_read_reg(DEV_I2C, DEV_ADDR, MPU9X50_PWR_MGMT_2_REG, &pwr_2_setting, 0);
/* Prepare power register settings */
if (pwr_conf == MPU9X50_SENSOR_PWR_ON) {
/* Set clock to pll */
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_PWR_MGMT_1_REG, MPU9X50_PWR_PLL, 0);
pwr_2_setting &= ~(MPU9X50_PWR_GYRO);
}
else {
/* Configure power management 1 register */
if ((dev->conf.accel_pwr == MPU9X50_SENSOR_PWR_OFF)
&& (dev->conf.compass_pwr == MPU9X50_SENSOR_PWR_OFF)) {
/* All sensors turned off, put the MPU-9X50 to sleep */
i2c_write_reg(DEV_I2C, DEV_ADDR,
MPU9X50_PWR_MGMT_1_REG, BIT_PWR_MGMT1_SLEEP, 0);
}
else {
/* Reset clock to internal oscillator */
i2c_write_reg(DEV_I2C, DEV_ADDR,
MPU9X50_PWR_MGMT_1_REG, MPU9X50_PWR_WAKEUP, 0);
}
pwr_2_setting |= MPU9X50_PWR_GYRO;
}
/* Enable/disable gyroscope standby in power management 2 register */
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_PWR_MGMT_2_REG, pwr_2_setting, 0);
/* Release the bus */
i2c_release(DEV_I2C);
dev->conf.gyro_pwr = pwr_conf;
ztimer_sleep(ZTIMER_MSEC, MPU9X50_PWR_CHANGE_SLEEP_MS);
return 0;
}
int mpu9x50_set_compass_power(mpu9x50_t *dev, mpu9x50_pwr_t pwr_conf)
{
uint8_t pwr_1_setting, usr_ctrl_setting, s1_do_setting;
if (dev->conf.compass_pwr == pwr_conf) {
return 0;
}
/* Acquire exclusive access */
i2c_acquire(DEV_I2C);
/* Read current user control configuration */
i2c_read_reg(DEV_I2C, DEV_ADDR, MPU9X50_USER_CTRL_REG, &usr_ctrl_setting, 0);
/* Prepare power register settings */
if (pwr_conf == MPU9X50_SENSOR_PWR_ON) {
pwr_1_setting = MPU9X50_PWR_WAKEUP;
s1_do_setting = MPU9X50_COMP_SINGLE_MEASURE;
usr_ctrl_setting |= BIT_I2C_MST_EN;
}
else {
pwr_1_setting = BIT_PWR_MGMT1_SLEEP;
s1_do_setting = MPU9X50_COMP_POWER_DOWN;
usr_ctrl_setting &= ~(BIT_I2C_MST_EN);
}
/* Configure power management 1 register if needed */
if ((dev->conf.gyro_pwr == MPU9X50_SENSOR_PWR_OFF)
&& (dev->conf.accel_pwr == MPU9X50_SENSOR_PWR_OFF)) {
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_PWR_MGMT_1_REG, pwr_1_setting, 0);
}
/* Configure mode writing by slave line 1 */
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_SLAVE1_DATA_OUT_REG, s1_do_setting, 0);
/* Enable/disable I2C master mode */
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_USER_CTRL_REG, usr_ctrl_setting, 0);
/* Release the bus */
i2c_release(DEV_I2C);
dev->conf.compass_pwr = pwr_conf;
ztimer_sleep(ZTIMER_MSEC, MPU9X50_PWR_CHANGE_SLEEP_MS);
return 0;
}
static inline uint32_t gyro_fsr_enum_to_value(mpu9x50_gyro_ranges_t fsr)
{
return 250U << fsr;
}
int mpu9x50_read_gyro(const mpu9x50_t *dev, mpu9x50_results_t *output)
{
uint8_t data[6];
int16_t temp;
assert((unsigned)dev->conf.gyro_fsr <= (unsigned)MPU9X50_GYRO_FSR_2000DPS);
uint32_t fsr = gyro_fsr_enum_to_value(dev->conf.gyro_fsr);
/* Acquire exclusive access */
i2c_acquire(DEV_I2C);
/* Read raw data */
i2c_read_regs(DEV_I2C, DEV_ADDR, MPU9X50_GYRO_START_REG, data, 6, 0);
/* Release the bus */
i2c_release(DEV_I2C);
/* Normalize data according to configured full scale range */
temp = byteorder_lebuftohs(&data[0]);
output->x_axis = (temp * fsr) / MAX_VALUE;
temp = byteorder_lebuftohs(&data[2]);
output->y_axis = (temp * fsr) / MAX_VALUE;
temp = byteorder_lebuftohs(&data[4]);
output->z_axis = (temp * fsr) / MAX_VALUE;
return 0;
}
static inline uint32_t accel_fsr_enum_to_value(mpu9x50_accel_ranges_t fsr)
{
return 2000U << fsr;
}
int mpu9x50_read_accel(const mpu9x50_t *dev, mpu9x50_results_t *output)
{
uint8_t data[6];
int16_t temp;
assert((unsigned)dev->conf.accel_fsr <= (unsigned)MPU9X50_ACCEL_FSR_16G);
uint32_t fsr = accel_fsr_enum_to_value(dev->conf.accel_fsr);
/* Acquire exclusive access */
i2c_acquire(DEV_I2C);
/* Read raw data */
i2c_read_regs(DEV_I2C, DEV_ADDR, MPU9X50_ACCEL_START_REG, data, 6, 0);
/* Release the bus */
i2c_release(DEV_I2C);
/* Normalize data according to configured full scale range */
temp = byteorder_lebuftohs(&data[0]);
output->x_axis = (temp * fsr) / MAX_VALUE;
temp = byteorder_lebuftohs(&data[2]);
output->y_axis = (temp * fsr) / MAX_VALUE;
temp = byteorder_lebuftohs(&data[4]);
output->z_axis = (temp * fsr) / MAX_VALUE;
return 0;
}
static int16_t convert_magnometer(int16_t raw, uint8_t adjust)
{
int32_t tmp = raw;
/* Compute sensitivity adjustment */
tmp += tmp * ((int32_t)adjust - 128) / 256;
/* return normalized data */
return (tmp * 3) / 10;
}
int mpu9x50_read_compass(const mpu9x50_t *dev, mpu9x50_results_t *output)
{
uint8_t data[6];
/* Acquire exclusive access */
i2c_acquire(DEV_I2C);
/* Read raw data */
i2c_read_regs(DEV_I2C, DEV_ADDR, MPU9X50_EXT_SENS_DATA_START_REG, data, 6, 0);
/* Release the bus */
i2c_release(DEV_I2C);
output->x_axis = convert_magnometer(byteorder_lebuftohs(&data[0]),
dev->conf.compass_x_adj);
output->y_axis = convert_magnometer(byteorder_lebuftohs(&data[2]),
dev->conf.compass_y_adj);
output->z_axis = convert_magnometer(byteorder_lebuftohs(&data[4]),
dev->conf.compass_z_adj);
return 0;
}
int mpu9x50_read_temperature(const mpu9x50_t *dev, int32_t *output)
{
uint16_t data;
/* Acquire exclusive access */
i2c_acquire(DEV_I2C);
/* Read raw temperature value */
i2c_read_regs(DEV_I2C, DEV_ADDR, MPU9X50_TEMP_START_REG, &data, 2, 0);
/* Release the bus */
i2c_release(DEV_I2C);
data = htons(data);
*output = (((int32_t)data * 1000LU) / MPU9X50_TEMP_SENSITIVITY) + (MPU9X50_TEMP_OFFSET * 1000LU);
return 0;
}
int mpu9x50_set_gyro_fsr(mpu9x50_t *dev, mpu9x50_gyro_ranges_t fsr)
{
if (dev->conf.gyro_fsr == fsr) {
return 0;
}
switch (fsr) {
case MPU9X50_GYRO_FSR_250DPS:
case MPU9X50_GYRO_FSR_500DPS:
case MPU9X50_GYRO_FSR_1000DPS:
case MPU9X50_GYRO_FSR_2000DPS:
i2c_acquire(DEV_I2C);
i2c_write_reg(DEV_I2C, DEV_ADDR,
MPU9X50_GYRO_CFG_REG, (fsr << 3), 0);
i2c_release(DEV_I2C);
dev->conf.gyro_fsr = fsr;
break;
default:
return -2;
}
return 0;
}
int mpu9x50_set_accel_fsr(mpu9x50_t *dev, mpu9x50_accel_ranges_t fsr)
{
if (dev->conf.accel_fsr == fsr) {
return 0;
}
switch (fsr) {
case MPU9X50_ACCEL_FSR_2G:
case MPU9X50_ACCEL_FSR_4G:
case MPU9X50_ACCEL_FSR_8G:
case MPU9X50_ACCEL_FSR_16G:
i2c_acquire(DEV_I2C);
i2c_write_reg(DEV_I2C, DEV_ADDR,
MPU9X50_ACCEL_CFG_REG, (fsr << 3), 0);
i2c_release(DEV_I2C);
dev->conf.accel_fsr = fsr;
break;
default:
return -2;
}
return 0;
}
int mpu9x50_set_sample_rate(mpu9x50_t *dev, uint16_t rate)
{
uint8_t divider;
if ((rate < MPU9X50_MIN_SAMPLE_RATE) || (rate > MPU9X50_MAX_SAMPLE_RATE)) {
return -2;
}
else if (dev->conf.sample_rate == rate) {
return 0;
}
/* Compute divider to achieve desired sample rate and write to rate div register */
divider = (1000 / rate - 1);
i2c_acquire(DEV_I2C);
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_RATE_DIV_REG, divider, 0);
/* Store configured sample rate */
dev->conf.sample_rate = 1000 / (((uint16_t) divider) + 1);
/* Always set LPF to a maximum of half the configured sampling rate */
conf_lpf(dev, (dev->conf.sample_rate >> 1));
i2c_release(DEV_I2C);
return 0;
}
int mpu9x50_set_compass_sample_rate(mpu9x50_t *dev, uint8_t rate)
{
uint8_t divider;
if ((rate < MPU9X50_MIN_COMP_SMPL_RATE) || (rate > MPU9X50_MAX_COMP_SMPL_RATE)
|| (rate > dev->conf.sample_rate)) {
return -2;
}
else if (dev->conf.compass_sample_rate == rate) {
return 0;
}
/* Compute divider to achieve desired sample rate and write to slave ctrl register */
divider = (dev->conf.sample_rate / rate - 1);
i2c_acquire(DEV_I2C);
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_SLAVE4_CTRL_REG, divider, 0);
i2c_release(DEV_I2C);
/* Store configured sample rate */
dev->conf.compass_sample_rate = dev->conf.sample_rate / (((uint16_t) divider) + 1);
return 0;
}
/*------------------------------------------------------------------------------------*/
/* Internal functions */
/*------------------------------------------------------------------------------------*/
/**
* Initialize compass
* Caution: This internal function does not acquire exclusive access to the I2C bus.
* Acquisition and release is supposed to be handled by the calling function.
*/
static int compass_init(mpu9x50_t *dev)
{
uint8_t data[3];
/* Enable Bypass Mode to speak to compass directly */
conf_bypass(dev, 1);
/* Check whether compass answers correctly */
i2c_read_reg(DEV_I2C, DEV_COMP_ADDR, COMPASS_WHOAMI_REG, data, 0);
if (data[0] != MPU9X50_COMP_WHOAMI_ANSWER) {
DEBUG("[Error] Wrong answer from compass\n");
return -1;
}
/* Configure Power Down mode */
i2c_write_reg(DEV_I2C, DEV_COMP_ADDR, COMPASS_CNTL_REG, MPU9X50_COMP_POWER_DOWN, 0);
ztimer_sleep(ZTIMER_MSEC, MPU9X50_COMP_MODE_SLEEP_MS);
/* Configure Fuse ROM access */
i2c_write_reg(DEV_I2C, DEV_COMP_ADDR, COMPASS_CNTL_REG, MPU9X50_COMP_FUSE_ROM, 0);
ztimer_sleep(ZTIMER_MSEC, MPU9X50_COMP_MODE_SLEEP_MS);
/* Read sensitivity adjustment values from Fuse ROM */
i2c_read_regs(DEV_I2C, DEV_COMP_ADDR, COMPASS_ASAX_REG, data, 3, 0);
dev->conf.compass_x_adj = data[0];
dev->conf.compass_y_adj = data[1];
dev->conf.compass_z_adj = data[2];
/* Configure Power Down mode again */
i2c_write_reg(DEV_I2C, DEV_COMP_ADDR, COMPASS_CNTL_REG, MPU9X50_COMP_POWER_DOWN, 0);
ztimer_sleep(ZTIMER_MSEC, MPU9X50_COMP_MODE_SLEEP_MS);
/* Disable Bypass Mode to configure MPU as master to the compass */
conf_bypass(dev, 0);
/* Configure MPU9X50 for single master mode */
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_I2C_MST_REG, BIT_WAIT_FOR_ES, 0);
/* Set up slave line 0 */
/* Slave line 0 reads the compass data */
i2c_write_reg(DEV_I2C, DEV_ADDR,
MPU9X50_SLAVE0_ADDR_REG, (BIT_SLAVE_RW | DEV_COMP_ADDR), 0);
/* Slave line 0 read starts at compass data register */
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_SLAVE0_REG_REG, COMPASS_DATA_START_REG, 0);
/* Enable slave line 0 and configure read length to 6 consecutive registers */
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_SLAVE0_CTRL_REG, (BIT_SLAVE_EN | 0x06), 0);
/* Set up slave line 1 */
/* Slave line 1 writes to the compass */
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_SLAVE1_ADDR_REG, DEV_COMP_ADDR, 0);
/* Slave line 1 write starts at compass control register */
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_SLAVE1_REG_REG, COMPASS_CNTL_REG, 0);
/* Enable slave line 1 and configure write length to 1 register */
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_SLAVE1_CTRL_REG, (BIT_SLAVE_EN | 0x01), 0);
/* Configure data which is written by slave line 1 to compass control */
i2c_write_reg(DEV_I2C, DEV_ADDR,
MPU9X50_SLAVE1_DATA_OUT_REG, MPU9X50_COMP_SINGLE_MEASURE, 0);
/* Slave line 0 and 1 operate at each sample */
i2c_write_reg(DEV_I2C, DEV_ADDR,
MPU9X50_I2C_DELAY_CTRL_REG, (BIT_SLV0_DELAY_EN | BIT_SLV1_DELAY_EN), 0);
/* Set I2C bus to VDD */
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_YG_OFFS_TC_REG, BIT_I2C_MST_VDDIO, 0);
return 0;
}
/**
* Configure bypass mode
* Caution: This internal function does not acquire exclusive access to the I2C bus.
* Acquisition and release is supposed to be handled by the calling function.
*/
static void conf_bypass(const mpu9x50_t *dev, uint8_t bypass_enable)
{
uint8_t data;
i2c_read_reg(DEV_I2C, DEV_ADDR, MPU9X50_USER_CTRL_REG, &data, 0);
if (bypass_enable) {
data &= ~(BIT_I2C_MST_EN);
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_USER_CTRL_REG, data, 0);
ztimer_sleep(ZTIMER_MSEC, MPU9X50_BYPASS_SLEEP_MS);
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_INT_PIN_CFG_REG, BIT_I2C_BYPASS_EN, 0);
}
else {
data |= BIT_I2C_MST_EN;
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_USER_CTRL_REG, data, 0);
ztimer_sleep(ZTIMER_MSEC, MPU9X50_BYPASS_SLEEP_MS);
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_INT_PIN_CFG_REG, REG_RESET, 0);
}
}
/**
* Configure low pass filter
* Caution: This internal function does not acquire exclusive access to the I2C bus.
* Acquisition and release is supposed to be handled by the calling function.
*/
static void conf_lpf(const mpu9x50_t *dev, uint16_t half_rate)
{
mpu9x50_lpf_t lpf_setting;
/* Get target LPF configuration setting */
if (half_rate >= 188) {
lpf_setting = MPU9X50_FILTER_188HZ;
}
else if (half_rate >= 98) {
lpf_setting = MPU9X50_FILTER_98HZ;
}
else if (half_rate >= 42) {
lpf_setting = MPU9X50_FILTER_42HZ;
}
else if (half_rate >= 20) {
lpf_setting = MPU9X50_FILTER_20HZ;
}
else if (half_rate >= 10) {
lpf_setting = MPU9X50_FILTER_10HZ;
}
else {
lpf_setting = MPU9X50_FILTER_5HZ;
}
/* Write LPF setting to configuration register */
i2c_write_reg(DEV_I2C, DEV_ADDR, MPU9X50_LPF_REG, lpf_setting, 0);
}