1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/drivers/lis2dh12/lis2dh12.c

817 lines
19 KiB
C

/*
* Copyright (C) 2018 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup drivers_lis2dh12
* @{
*
* @file
* @brief LIS2DH12 accelerometer driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Jan Mohr <jan.mohr@ml-pa.com>
* @author Benjamin Valentin <benjamin.valentin@ml-pa.com>
* @}
*/
#include "assert.h"
#include "byteorder.h"
#include "mutex.h"
#include "timex.h"
#include "ztimer.h"
#include "lis2dh12.h"
#include "lis2dh12_internal.h"
#include "lis2dh12_registers.h"
#define ENABLE_DEBUG 0
#include "debug.h"
/* the following block contains the SPI mode specific adaption */
#ifdef MODULE_LIS2DH12_SPI
/* SPI bus speed and mode */
#define BUS_CLK SPI_CLK_5MHZ
#define BUS_MODE SPI_MODE_0
#define BUS_OK SPI_OK
/* shortcuts for SPI bus parameters */
#define BUS (dev->p->spi)
#define BUS_CS (dev->p->cs)
/* flag to set when reading from the device */
#define FLAG_READ (0x80)
/* flag to enable address auto incrementation on read or write */
#define FLAG_AINC (0x40)
static int _init_bus(const lis2dh12_t *dev)
{
/* for SPI, we only need to initialize the chip select pin */
if (spi_init_cs(BUS, BUS_CS) != SPI_OK) {
return LIS2DH12_NOBUS;
}
return LIS2DH12_OK;
}
static int _acquire(const lis2dh12_t *dev)
{
spi_acquire(BUS, BUS_CS, BUS_MODE, BUS_CLK);
return BUS_OK;
}
static void _release(const lis2dh12_t *dev)
{
spi_release(BUS);
}
static uint8_t _read(const lis2dh12_t *dev, uint8_t reg)
{
return spi_transfer_reg(BUS, BUS_CS, (FLAG_READ | reg), 0);
}
static void _read_burst(const lis2dh12_t *dev, uint8_t reg, void *data,
size_t len) {
spi_transfer_regs(BUS, BUS_CS, (FLAG_READ | FLAG_AINC | reg), NULL, data,
len);
}
static void _write(const lis2dh12_t *dev, uint8_t reg, uint8_t data)
{
DEBUG("[lis2dh12] write: reg 0x%02x, val 0x%02x\n", (int)reg, (int)data);
spi_transfer_reg(BUS, BUS_CS, reg, data);
}
/* and now the I2C specific part of the driver */
#else
/* I2C config */
#define BUS_OK (0)
/* I2C shortcuts */
#define BUS (dev->p->i2c)
#define ADDR (dev->p->addr)
/* flag for enabling address auto-incrementation */
#define FLAG_AINC (0x80)
static int _init_bus(const lis2dh12_t *dev)
{
(void) dev;
/* for I2C, the bus is already set up by auto_init */
return LIS2DH12_OK;
}
static int _acquire(const lis2dh12_t *dev)
{
i2c_acquire(BUS);
return BUS_OK;
}
static void _release(const lis2dh12_t *dev)
{
i2c_release(BUS);
}
static uint8_t _read(const lis2dh12_t *dev, uint8_t reg)
{
uint8_t tmp;
i2c_read_reg(BUS, ADDR, reg, &tmp, 0);
return tmp;
}
static void _read_burst(const lis2dh12_t *dev, uint8_t reg, void *data, size_t len)
{
i2c_read_regs(BUS, ADDR, (FLAG_AINC | reg), data, len, 0);
}
static void _write(const lis2dh12_t *dev, uint8_t reg, uint8_t data)
{
DEBUG("[lis2dh12] write: reg 0x%02x, val 0x%02x\n", (int)reg, (int)data);
i2c_write_reg(BUS, ADDR, reg, data, 0);
}
#endif /* MODULE_LIS2DH12_SPI */
static void _write_or(const lis2dh12_t *dev, uint8_t reg, uint8_t data)
{
data |= _read(dev, reg);
_write(dev, reg, data);
}
int lis2dh12_init(lis2dh12_t *dev, const lis2dh12_params_t *params)
{
assert(dev && params);
dev->p = params;
/* initialize the chip select line */
if (_init_bus(dev) != LIS2DH12_OK) {
DEBUG("[lis2dh12] error: unable to initialize the bus\n");
return LIS2DH12_NOBUS;
}
/* set resolution */
lis2dh12_set_resolution(dev, dev->p->resolution);
/* clear stale data */
lis2dh12_clear_data(dev);
/* set data range */
lis2dh12_set_scale(dev, dev->p->scale);
/* acquire the bus and verify that our parameters are valid */
if (_acquire(dev) != BUS_OK) {
DEBUG("[lis2dh12] error: unable to acquire the bus\n");
return LIS2DH12_NOBUS;
}
/* read the WHO_IM_I register to verify the connections to the device */
if (_read(dev, REG_WHO_AM_I) != WHO_AM_I_VAL) {
DEBUG("[lis2dh12] error: invalid value read from WHO_AM_I register\n");
_release(dev);
return LIS2DH12_NODEV;
}
/* clear events */
_write(dev, REG_CTRL_REG3, 0);
_write(dev, REG_CTRL_REG6, 0);
/* disable fifo */
_write(dev, REG_FIFO_CTRL_REG, 0);
/* enable all axes, set sampling rate and scale */
LIS2DH12_CTRL_REG1_t reg1 = {0};
reg1.bit.ODR = dev->p->rate;
reg1.bit.Xen = 1;
reg1.bit.Yen = 1;
reg1.bit.Zen = 1;
_write(dev, REG_CTRL_REG1, reg1.reg);
/* enable block data update */
_write(dev, REG_CTRL_REG4, 0x80);
_release(dev);
DEBUG("[lis2dh12] initialization successful\n");
return LIS2DH12_OK;
}
static void _get_fifo_data(const lis2dh12_t *dev, lis2dh12_fifo_data_t *dst, uint8_t comp)
{
_read_burst(dev, REG_OUT_X_L, dst, sizeof(*dst));
for (unsigned i = 0; i < 3; ++i) {
dst->data[i] >>= comp;
}
}
int lis2dh12_read(const lis2dh12_t *dev, lis2dh12_fifo_data_t *data)
{
assert(dev && data);
/* read sampled data from the device */
_acquire(dev);
uint8_t comp = 4 - ((_read(dev, REG_CTRL_REG4) >> 4) & 0x3);
/* first check if valid data is available */
if ((_read(dev, REG_STATUS_REG) & LIS2DH12_STATUS_REG_ZYXDA) == 0) {
_release(dev);
return LIS2DH12_NODATA;
}
_get_fifo_data(dev, data, comp);
_release(dev);
return LIS2DH12_OK;
}
static const uint16_t mg_per_bit[] = {
16, /* scale = 2g */
32, /* scale = 4g */
62, /* scale = 8g */
186 /* scale = 16g */
};
static const uint16_t hz_per_dr[] = {
0, /* power down */
1, /* Hz */
10, /* Hz */
25, /* Hz */
50, /* Hz */
100, /* Hz */
200, /* Hz */
400, /* Hz */
1620, /* Hz */
5376, /* Hz */
};
void lis2dh12_cfg_threshold_event(const lis2dh12_t *dev,
uint32_t mg, uint32_t us,
uint8_t axis, uint8_t event, uint8_t line)
{
assert(line == LIS2DH12_INT1 || line == LIS2DH12_INT2);
assert(event == LIS2DH12_EVENT_1 || event == LIS2DH12_EVENT_2);
_acquire(dev);
LIS2DH12_CTRL_REG2_t reg2;
reg2.reg = _read(dev, REG_CTRL_REG2);
uint8_t odr = _read(dev, REG_CTRL_REG1) >> 4;
uint8_t scale = (_read(dev, REG_CTRL_REG4) >> 4) & 0x3;
uint8_t int_reg = 0;
/* read current interrupt configuration */
if (line == LIS2DH12_INT1) {
int_reg = _read(dev, REG_CTRL_REG3);
}
if (line == LIS2DH12_INT2) {
int_reg = _read(dev, REG_CTRL_REG6);
}
DEBUG("[%u] threshold: %"PRIu32" mg\n", event, mg);
/* read reference to set it to current data */
_read(dev, REG_REFERENCE);
/* configure interrupt */
switch (event) {
case LIS2DH12_EVENT_1:
/* apply high-pass to interrupt */
reg2.bit.HP_IA1 = 1;
int_reg |= LIS2DH12_INT_TYPE_IA1;
/* clear INT flags */
_read(dev, REG_INT1_SRC);
_write(dev, REG_INT1_CFG, axis);
_write(dev, REG_INT1_THS, mg / mg_per_bit[scale]);
_write(dev, REG_INT1_DURATION, (us * hz_per_dr[odr]) / US_PER_SEC);
break;
case LIS2DH12_EVENT_2:
/* apply high-pass to interrupt */
reg2.bit.HP_IA2 = 1;
int_reg |= LIS2DH12_INT_TYPE_IA2;
/* clear INT flags */
_read(dev, REG_INT2_SRC);
_write(dev, REG_INT2_CFG, axis);
_write(dev, REG_INT2_THS, mg / mg_per_bit[scale]);
_write(dev, REG_INT2_DURATION, (us * hz_per_dr[odr]) / US_PER_SEC);
break;
}
/* configure high-pass */
_write(dev, REG_CTRL_REG2, reg2.reg);
/* write back configuration */
if (line == LIS2DH12_INT1) {
_write(dev, REG_CTRL_REG3, int_reg);
}
if (line == LIS2DH12_INT2) {
_write(dev, REG_CTRL_REG6, int_reg);
}
_release(dev);
}
void lis2dh12_cfg_click_event(const lis2dh12_t *dev, uint32_t mg,
uint32_t us_limit, uint32_t us_latency, uint32_t us_window,
uint8_t click, uint8_t line)
{
_acquire(dev);
uint8_t odr = _read(dev, REG_CTRL_REG1) >> 4;
uint8_t scale = (_read(dev, REG_CTRL_REG4) >> 4) & 0x3;
DEBUG("click threshold: %"PRIu32" mg\n", mg);
/* read reference to set it to current data */
_read(dev, REG_REFERENCE);
/* select click axis & mode */
_write(dev, REG_CLICK_CFG, click);
/* enable interrupt latching */
_write(dev, REG_CLICK_THS, (mg / mg_per_bit[scale]) | LIS2DH12_CLICK_THS_LIR);
/* set timing parameters */
_write(dev, REG_TIME_LIMIT, (us_limit * hz_per_dr[odr]) / US_PER_SEC);
_write(dev, REG_TIME_LATENCY, (us_latency * hz_per_dr[odr]) / US_PER_SEC);
_write(dev, REG_TIME_WINDOW, (us_window * hz_per_dr[odr]) / US_PER_SEC);
/* enable high-pass */
_write_or(dev, REG_CTRL_REG2, LIS2DH12_CTRL_REG2_HPCLICK);
/* clear INT flags */
_read(dev, REG_CLICK_SRC);
/* configure interrupt */
if (line == LIS2DH12_INT1) {
_write_or(dev, REG_CTRL_REG3, LIS2DH12_INT_TYPE_CLICK);
}
if (line == LIS2DH12_INT2) {
_write_or(dev, REG_CTRL_REG6, LIS2DH12_INT_TYPE_CLICK);
}
_release(dev);
}
void lis2dh12_cfg_disable_event(const lis2dh12_t *dev, uint8_t event, uint8_t line)
{
uint8_t reg = 0;
_acquire(dev);
/* read current interrupt configuration */
if (line == LIS2DH12_INT1) {
reg = _read(dev, REG_CTRL_REG3);
}
if (line == LIS2DH12_INT2) {
reg = _read(dev, REG_CTRL_REG6);
}
/* remove event */
if (event == LIS2DH12_EVENT_1) {
reg &= ~LIS2DH12_INT_TYPE_IA1;
/* clear INT flags */
_read(dev, REG_INT1_SRC);
}
if (event == LIS2DH12_EVENT_2) {
reg &= ~LIS2DH12_INT_TYPE_IA2;
/* clear INT flags */
_read(dev, REG_INT2_SRC);
}
if (event == LIS2DH12_EVENT_CLICK) {
reg &= ~LIS2DH12_INT_TYPE_CLICK;
/* clear INT flags */
_read(dev, REG_CLICK_SRC);
}
/* write back configuration */
if (line == LIS2DH12_INT1) {
_write(dev, REG_CTRL_REG3, reg);
}
if (line == LIS2DH12_INT2) {
_write(dev, REG_CTRL_REG6, reg);
}
_release(dev);
}
#ifdef MODULE_LIS2DH12_INT
static void _cb(void *lock)
{
mutex_unlock(lock);
}
static uint32_t _merge_int_flags(const lis2dh12_t *dev, uint8_t events)
{
uint32_t int_src = 0;
/* merge interrupt flags (7 bit per event) into one word */
if (events & LIS2DH12_INT_TYPE_IA1) {
int_src |= (uint32_t)_read(dev, REG_INT1_SRC);
}
if (events & LIS2DH12_INT_TYPE_IA2) {
int_src |= (uint32_t)_read(dev, REG_INT2_SRC) << 8;
}
if (events & LIS2DH12_INT_TYPE_CLICK) {
int_src |= (uint32_t)_read(dev, REG_CLICK_SRC) << 16;
}
DEBUG("int_src: %"PRIx32"\n", int_src);
return int_src;
}
#define LIS2DH12_INT_SRC_ANY (((uint32_t)LIS2DH12_INT_SRC_IA << 0) | \
((uint32_t)LIS2DH12_INT_SRC_IA << 8) | \
((uint32_t)LIS2DH12_INT_SRC_IA << 16))
int lis2dh12_wait_event(const lis2dh12_t *dev, uint8_t line, bool stale_events)
{
uint32_t int_src;
uint8_t events = 0;
mutex_t lock = MUTEX_INIT_LOCKED;
gpio_t pin = line == LIS2DH12_INT2
? dev->p->int2_pin
: dev->p->int1_pin;
_acquire(dev);
/* find out which events are configured */
if (line == LIS2DH12_INT1) {
events = _read(dev, REG_CTRL_REG3);
}
if (line == LIS2DH12_INT2) {
events = _read(dev, REG_CTRL_REG6);
}
/* check for stale interrupt */
int_src = _merge_int_flags(dev, events);
_release(dev);
/* return early if stale interrupt is present */
if (stale_events && (int_src & LIS2DH12_INT_SRC_ANY)) {
return int_src;
}
/* enable interrupt pin */
assert(gpio_is_valid(pin));
if (gpio_init_int(pin, GPIO_IN, GPIO_RISING, _cb, &lock)) {
return LIS2DH12_NOINT;
}
/* wait for interrupt */
mutex_lock(&lock);
gpio_irq_disable(pin);
/* read interrupt source */
_acquire(dev);
int_src = _merge_int_flags(dev, events);
_release(dev);
return int_src;
}
#endif /* MODULE_LIS2DH12_INT */
int lis2dh12_set_fifo(const lis2dh12_t *dev, const lis2dh12_fifo_t *config)
{
assert(dev && config);
LIS2DH12_CTRL_REG5_t reg5 = {0};
LIS2DH12_FIFO_CTRL_REG_t fifo_reg = {0};
reg5.bit.LIR_INT1 = 1;
reg5.bit.LIR_INT2 = 1;
if (config->FIFO_mode != LIS2DH12_FIFO_MODE_BYPASS) {
reg5.bit.FIFO_EN = 1;
} else {
reg5.bit.FIFO_EN = 0;
}
fifo_reg.bit.TR = config->FIFO_set_INT2;
fifo_reg.bit.FM = config->FIFO_mode;
fifo_reg.bit.FTH = config->FIFO_watermark;
_acquire(dev);
_write(dev, REG_CTRL_REG5, reg5.reg);
_write(dev, REG_FIFO_CTRL_REG, fifo_reg.reg);
_release(dev);
return LIS2DH12_OK;
}
int lis2dh12_restart_fifo(const lis2dh12_t *dev)
{
assert(dev);
_acquire(dev);
uint8_t reg5 = _read(dev, REG_CTRL_REG5);
LIS2DH12_FIFO_CTRL_REG_t fifo_reg;
fifo_reg.reg = _read(dev, REG_FIFO_CTRL_REG);
uint8_t fifo_mode_old = fifo_reg.bit.FM;
fifo_reg.bit.FM = LIS2DH12_FIFO_MODE_BYPASS;
/* switch to Bypass mode */
_write(dev, REG_FIFO_CTRL_REG, fifo_reg.reg);
fifo_reg.bit.FM = fifo_mode_old;
_write(dev, REG_CTRL_REG5, reg5);
_write(dev, REG_FIFO_CTRL_REG, fifo_reg.reg);
_release(dev);
return LIS2DH12_OK;
}
uint8_t lis2dh12_read_fifo_data(const lis2dh12_t *dev, lis2dh12_fifo_data_t *fifo_data,
uint8_t number)
{
assert(dev && fifo_data);
/* check max FIFO length */
assert(number <= 32);
_acquire(dev);
/* check if number is available */
LIS2DH12_FIFO_SRC_REG_t src_reg;
src_reg.reg = _read(dev, REG_FIFO_SRC_REG);
if (src_reg.bit.FSS < number) {
number = src_reg.bit.FSS;
}
uint8_t comp = 4 - ((_read(dev, REG_CTRL_REG4) >> 4) & 0x3);
/* calculate X, Y and Z values */
for (uint8_t i = 0; i < number; i++) {
_get_fifo_data(dev, &fifo_data[i], comp);
}
_release(dev);
return number;
}
int lis2dh12_clear_data(const lis2dh12_t *dev)
{
assert(dev);
LIS2DH12_CTRL_REG5_t ctrl_reg5 = {
.bit.BOOT = 1,
.bit.LIR_INT1 = 1,
.bit.LIR_INT2 = 1,
};
_acquire(dev);
_write(dev, REG_CTRL_REG5, ctrl_reg5.reg);
_release(dev);
return LIS2DH12_OK;
}
int lis2dh12_read_temperature(const lis2dh12_t *dev, int16_t *temp)
{
uint8_t bytes[2];
_acquire(dev);
/* enable temperature sensor */
if (!_read(dev, REG_TEMP_CFG_REG)) {
_write(dev, REG_TEMP_CFG_REG, LIS2DH12_TEMP_CFG_REG_ENABLE);
#if IS_USED(MODULE_ZTIMER_MSEC)
uint8_t odr = _read(dev, REG_CTRL_REG1) >> 4;
ztimer_sleep(ZTIMER_MSEC, MS_PER_SEC / hz_per_dr[odr]);
#endif
}
_read_burst(dev, REG_OUT_TEMP_L, bytes, sizeof(bytes));
_release(dev);
*temp = 100 * (int8_t)bytes[1];
*temp += (100 * bytes[0]) >> 8;
return 0;
}
int lis2dh12_set_reference(const lis2dh12_t *dev, uint8_t reference)
{
assert(dev);
_acquire(dev);
_write(dev, REG_REFERENCE, reference);
_release(dev);
return LIS2DH12_OK;
}
int lis2dh12_set_highpass(const lis2dh12_t *dev, const lis2dh12_highpass_t *config)
{
assert(dev && config);
LIS2DH12_CTRL_REG2_t data = {0};
data.bit.HPM = config->Highpass_mode;
data.bit.HPCF = config->Highpass_freq;
data.bit.FDS = config->DATA_OUT_enable;
data.bit.HP_IA1 = config->INT1_enable;
data.bit.HP_IA2 = config->INT2_enable;
data.bit.HPCLICK = config->CLICK_enable;
_acquire(dev);
_write(dev, REG_CTRL_REG2, data.reg);
_release(dev);
return LIS2DH12_OK;
}
int lis2dh12_set_resolution(const lis2dh12_t *dev, lis2dh12_resolution_t resolution)
{
assert(dev);
LIS2DH12_CTRL_REG1_t reg1;
LIS2DH12_CTRL_REG4_t reg4;
_acquire(dev);
reg1.reg = _read(dev, REG_CTRL_REG1);
reg4.reg = _read(dev, REG_CTRL_REG4);
/* set power mode */
if (resolution == LIS2DH12_POWER_LOW) {
reg1.bit.LPen = 1;
reg4.bit.HR = 0;
}
else if (resolution == LIS2DH12_POWER_HIGH) {
reg1.bit.LPen = 0;
reg4.bit.HR = 1;
}
else if (resolution == LIS2DH12_POWER_NORMAL) {
reg1.bit.LPen = 0;
reg4.bit.HR = 0;
}
else { /* power down mode */
reg1.bit.ODR = 0;
}
_write(dev, REG_CTRL_REG1, reg1.reg);
_write(dev, REG_CTRL_REG4, reg4.reg);
_release(dev);
return LIS2DH12_OK;
}
lis2dh12_resolution_t lis2dh12_get_resolution(const lis2dh12_t *dev)
{
assert(dev);
LIS2DH12_CTRL_REG1_t reg1;
LIS2DH12_CTRL_REG4_t reg4;
_acquire(dev);
reg1.reg = _read(dev, REG_CTRL_REG1);
reg4.reg = _read(dev, REG_CTRL_REG4);
_release(dev);
if (!reg1.bit.ODR) {
return LIS2DH12_POWER_DOWN;
}
if (reg1.bit.LPen) {
return LIS2DH12_POWER_LOW;
}
if (reg4.bit.HR) {
return LIS2DH12_POWER_HIGH;
}
return LIS2DH12_POWER_NORMAL;
}
int lis2dh12_set_datarate(const lis2dh12_t *dev, lis2dh12_rate_t rate)
{
assert(dev);
assert(rate <= 0x9);
LIS2DH12_CTRL_REG1_t reg1;
_acquire(dev);
reg1.reg = _read(dev, REG_CTRL_REG1);
reg1.bit.ODR = rate;
_write(dev, REG_CTRL_REG1, reg1.reg);
_release(dev);
return LIS2DH12_OK;
}
uint16_t lis2dh12_get_datarate(const lis2dh12_t *dev)
{
const uint16_t rates_hz[] = {
0,
1,
10,
25,
50,
100,
200,
400,
};
assert(dev);
LIS2DH12_CTRL_REG1_t reg1;
_acquire(dev);
reg1.reg = _read(dev, REG_CTRL_REG1);
_release(dev);
if (reg1.bit.ODR < ARRAY_SIZE(rates_hz)) {
return rates_hz[reg1.bit.ODR];
}
if (reg1.bit.LPen) {
if (reg1.bit.ODR == 8) {
return 1620;
}
if (reg1.bit.ODR == 9) {
return 5376;
}
}
if (reg1.bit.ODR == 9) {
return 1344;
}
return 0;
}
int lis2dh12_set_scale(lis2dh12_t *dev, lis2dh12_scale_t scale)
{
assert(dev);
assert(scale <= LIS2DH12_SCALE_16G);
LIS2DH12_CTRL_REG4_t reg4;
_acquire(dev);
reg4.reg = _read(dev, REG_CTRL_REG4);
reg4.bit.FS = scale;
_write(dev, REG_CTRL_REG4, reg4.reg);
_release(dev);
return LIS2DH12_OK;
}
lis2dh12_scale_t lis2dh12_get_scale(lis2dh12_t *dev)
{
assert(dev);
LIS2DH12_CTRL_REG4_t reg4;
_acquire(dev);
reg4.reg = _read(dev, REG_CTRL_REG4);
_release(dev);
return reg4.bit.FS;
}
int lis2dh12_poweron(const lis2dh12_t *dev)
{
assert(dev);
/* set default param values */
lis2dh12_set_datarate(dev, dev->p->rate);
lis2dh12_set_resolution(dev, dev->p->resolution);
return LIS2DH12_OK;
}
int lis2dh12_poweroff(const lis2dh12_t *dev)
{
assert(dev);
/* set datarate to zero */
lis2dh12_set_datarate(dev, 0);
/* disable temperature sensor */
_acquire(dev);
_write(dev, REG_TEMP_CFG_REG, LIS2DH12_TEMP_CFG_REG_DISABLE);
_release(dev);
return LIS2DH12_OK;
}