1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/stm32/periph/adc_f3.c
2022-02-21 10:49:43 +01:00

233 lines
5.9 KiB
C

/*
* Copyright (C) 2020 LAAS-CNRS
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_stm32
* @ingroup drivers_periph_adc
* @{
*
* @file
* @brief Low-level ADC driver implementation
*
* @author Hugues Larrive <hugues.larrive@pm.me>
*
* @}
*/
#include "cpu.h"
#include "mutex.h"
#include "periph/adc.h"
#include "periph_conf.h"
#include "ztimer.h"
#include "periph/vbat.h"
#define SMP_MIN (0x2) /*< Sampling time for slow channels
(0x2 = 4.5 ADC clock cycles) */
#ifdef ADC1_COMMON
#define ADC_INSTANCE ADC1_COMMON
#else
#define ADC_INSTANCE ADC12_COMMON
#endif
/**
* @brief Default VBAT undefined value
*/
#ifndef VBAT_ADC
#define VBAT_ADC ADC_UNDEF
#endif
/**
* @brief Allocate locks for all available ADC devices
*/
static mutex_t locks[ADC_DEVS];
static inline ADC_TypeDef *dev(adc_t line)
{
switch (adc_config[line].dev) {
#ifdef ADC2_BASE
case 1:
return (ADC_TypeDef *)(ADC2_BASE);
break;
#endif
#ifdef ADC34_COMMON
case 2:
return (ADC_TypeDef *)(ADC3_BASE);
break;
case 3:
return (ADC_TypeDef *)(ADC4_BASE);
break;
#endif
default:
return (ADC_TypeDef *)(ADC1_BASE);
break;
}
}
static inline void prep(adc_t line)
{
mutex_lock(&locks[adc_config[line].dev]);
/* Enable the clock here only if it will be disabled by done, else just
* enable it once in adc_init() */
#if defined(RCC_AHBENR_ADC1EN)
periph_clk_en(AHB, RCC_AHBENR_ADC1EN);
#endif
}
static inline void done(adc_t line)
{
/* On some STM32F3 ADC are grouped by paire (ADC12EN or ADC34EN) so
* don't disable the clock as the other device may still use it. */
#if defined(RCC_AHBENR_ADC1EN)
periph_clk_dis(AHB, RCC_AHBENR_ADC1EN);
#endif
mutex_unlock(&locks[adc_config[line].dev]);
}
int adc_init(adc_t line)
{
/* Check if the line is valid */
if (line >= ADC_NUMOF) {
return -1;
}
/* Lock device and enable its peripheral clock */
prep(line);
/* On some STM32F3 ADC are grouped by paire (ADC12EN or ADC34EN) so
* enable the clock only once here. */
#if defined(RCC_AHBENR_ADC12EN)
if (adc_config[line].dev <= 1) {
periph_clk_en(AHB, RCC_AHBENR_ADC12EN);
}
#endif
#if defined(RCC_AHBENR_ADC34EN)
if (adc_config[line].dev >= 2) {
periph_clk_en(AHB, RCC_AHBENR_ADC34EN);
}
#endif
/* Setting ADC clock to HCLK/1 is only allowed if AHB clock
* prescaler is 1 */
if (!(RCC->CFGR & RCC_CFGR_HPRE_3)) {
/* set ADC clock to HCLK/1 */
if (adc_config[line].dev <= 1) {
ADC_INSTANCE->CCR |= ADC_CCR_CKMODE_0;
}
#ifdef ADC34_COMMON
if (adc_config[line].dev >= 2) {
ADC34_COMMON->CCR |= ADC_CCR_CKMODE_0;
}
#endif
}
else {
/* set ADC clock to HCLK/2 otherwise */
if (adc_config[line].dev <= 1) {
ADC_INSTANCE->CCR |= ADC_CCR_CKMODE_1;
}
#ifdef ADC34_COMMON
if (adc_config[line].dev >= 2) {
ADC34_COMMON->CCR |= ADC_CCR_CKMODE_1;
}
#endif
}
/* Configure the pin */
if (adc_config[line].pin != GPIO_UNDEF) {
gpio_init_analog(adc_config[line].pin);
}
/* Init ADC line only if it wasn't already initialized */
if (!(dev(line)->CR & ADC_CR_ADEN)) {
/* Enable ADC internal voltage regulator and wait for startup period */
dev(line)->CR |= ADC_CR_ADVREGEN;
#if IS_USED(MODULE_ZTIMER_USEC)
ztimer_sleep(ZTIMER_USEC, ADC_T_ADCVREG_STUP_US);
#else
/* to avoid using ZTIMER_USEC unless already included round up the
internal voltage regulator start up to 1ms */
ztimer_sleep(ZTIMER_MSEC, 1);
#endif
if (dev(line)->DIFSEL & (1 << adc_config[line].chan)) {
/* Configure calibration for differential inputs */
dev(line)->CR |= ADC_CR_ADCALDIF;
}
else {
/* Configure calibration for single ended inputs */
dev(line)->CR &= ~ADC_CR_ADCALDIF;
}
/* Start automatic calibration and wait for it to complete */
dev(line)->CR |= ADC_CR_ADCAL;
while (dev(line)->CR & ADC_CR_ADCAL) {}
/* Clear ADRDY by writing it */
dev(line)->ISR |= ADC_ISR_ADRDY;
/* Enable ADC and wait for it to be ready */
dev(line)->CR |= ADC_CR_ADEN;
while ((dev(line)->ISR & ADC_ISR_ADRDY) == 0) {}
/* Set sequence length to 1 conversion */
dev(line)->SQR1 |= (0 & ADC_SQR1_L);
}
/* Configure sampling time for the given channel */
if (adc_config[line].chan < 10) {
dev(line)->SMPR1 = (SMP_MIN << (adc_config[line].chan * 3));
}
else {
dev(line)->SMPR2 = (SMP_MIN << ((adc_config[line].chan - 10) * 3));
}
/* Power off and unlock device again */
done(line);
return 0;
}
int32_t adc_sample(adc_t line, adc_res_t res)
{
int sample;
/* Check if resolution is applicable */
if (res & 0x3) {
return -1;
}
/* Lock and power on the ADC device */
prep(line);
/* check if this is the VBAT line */
if (IS_USED(MODULE_PERIPH_VBAT) && line == VBAT_ADC) {
vbat_enable();
}
/* Set resolution */
dev(line)->CFGR &= ~ADC_CFGR_RES;
dev(line)->CFGR |= res;
/* Specify channel for regular conversion */
dev(line)->SQR1 = adc_config[line].chan << ADC_SQR1_SQ1_Pos;
/* Start conversion and wait for it to complete */
dev(line)->CR |= ADC_CR_ADSTART;
while (!(dev(line)->ISR & ADC_ISR_EOC)) {}
/* Read the sample */
sample = (int)dev(line)->DR;
/* check if this is the VBAT line */
if (IS_USED(MODULE_PERIPH_VBAT) && line == VBAT_ADC) {
vbat_disable();
}
/* Power off and unlock device again */
done(line);
return sample;
}