1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/sam3/periph/timer.c
Marian Buschsieweke 63caa45746
cpu/sam3: assert valid freq in timer_init()
The API of timer_init() expects callers to know what frequencies are
supported and only use valid frequencies. So let's add an `assert()`
to aid debugging if the app uses an invalid.
2023-09-15 12:58:31 +02:00

209 lines
5.2 KiB
C

/*
* Copyright (C) 2014-2016 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_sam3
* @ingroup drivers_periph_timer
* @{
*
* @file
* @brief Low-level timer driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include <stdlib.h>
#include <stdio.h>
#include "board.h"
#include "cpu.h"
#include "periph/timer.h"
#include "periph_conf.h"
/**
* @brief Memory to store the interrupt context
*/
static timer_isr_ctx_t isr_ctx[TIMER_NUMOF];
/**
* @brief Enable the clock for the selected timer channels
*/
static inline void clk_en(tim_t tim)
{
uint8_t id = timer_config[tim].id_ch0;
if (id < 32) {
PMC->PMC_PCER0 = ((1 << id) | (1 << (id + 1)));
} else {
id -= 32;
PMC->PMC_PCER1 = ((1 << id) | (1 << (id + 1)));
}
}
/**
* @brief Get the timer ID from the timer's base address
*/
static inline Tc *dev(tim_t tim)
{
return timer_config[tim].dev;
}
/**
* @brief Setup the given timer
*
* The SAM3X8E has 3 timers build of 3 independent channels. Each of these
* channels has 3 capture compare outputs (A-C).
*
* RIOT uses the 2 of the channels in WAVE mode with the following clock
* chaining:
*
* ---------- ----------
* | | | |-> IRQ-compareA
* | TCx[1] | ---- TIOA1 --->| TCx[0] |-> IRQ-compareB
* | | | |-> IRQ-compareC
* ---------- ----------
* ^
* TIMER_CLOCK1
*
* For each timer, channel 1 is used to implement a prescaler. Channel 1 is
* driven by the MCK / 2 (42MHz) (TIMER_CLOCK1).
*/
int timer_init(tim_t tim, uint32_t freq, timer_cb_t cb, void *arg)
{
/* check if device is valid */
if (tim >= TIMER_NUMOF) {
return -1;
}
/* enable the device clock */
clk_en(tim);
/* save callback */
isr_ctx[tim].cb = cb;
isr_ctx[tim].arg = arg;
/* configure the timer block by connecting TIOA1 to XC0 */
dev(tim)->TC_BMR = TC_BMR_TC0XC0S_TIOA1;
/* configure and enable channel 0 to use XC0 as input */
dev(tim)->TC_CHANNEL[0].TC_CMR = (TC_CMR_TCCLKS_XC0 |
TC_CMR_WAVE | TC_CMR_EEVT_XC0);
dev(tim)->TC_CHANNEL[0].TC_CCR = (TC_CCR_CLKEN | TC_CCR_SWTRG);
/* configure channel 1:
* - select wave mode
* - set input clock to TIMER_CLOCK1 (MCK/2)
* - reload on TC_CV == TC_RC
* - let TIOA2 signal be toggled when TC_CV == TC_RC
*/
dev(tim)->TC_CHANNEL[1].TC_CMR = (TC_CMR_TCCLKS_TIMER_CLOCK1 | TC_CMR_WAVE |
TC_CMR_WAVSEL_UP_RC | TC_CMR_ACPC_TOGGLE);
/* configure the frequency of channel 1 to freq * 4
*
* note: as channel 0 is only incremented on rising edges of TIOA1 line and
* channel 1 toggles this line on each timer tick, the actual frequency
* driving channel 0 is f_ch2 / 2 --> f_ch0/1 = (MCK / 2) / 2 / freq.
*/
uint32_t tc_rc = (CLOCK_CORECLOCK / 4) / freq;
/* the API expects apps to know in advance which frequencies are possible
* and only configure with supported frequencies. So aid debugging with
* an assert */
assert(tc_rc * freq == CLOCK_CORECLOCK / 4);
dev(tim)->TC_CHANNEL[1].TC_RC = tc_rc;
/* start channel 1 */
dev(tim)->TC_CHANNEL[1].TC_CCR = (TC_CCR_CLKEN | TC_CCR_SWTRG);
/* enable global interrupts for given timer */
NVIC_EnableIRQ(timer_config[tim].id_ch0);
return 0;
}
int timer_set_absolute(tim_t tim, int channel, unsigned int value)
{
if (channel >= TIMER_CHANNEL_NUMOF) {
return -1;
}
(&dev(tim)->TC_CHANNEL[0].TC_RA)[channel] = value;
/* read TC status register to clear any possibly pending
* ISR flag (that has not been served yet).
* timer_clear() disables the interrupt, but does not clear the flags.
* if we don't clear them here, re-enabling the interrupt below
* can trigger for the previously disabled timer. */
(void)dev(tim)->TC_CHANNEL[0].TC_SR;
dev(tim)->TC_CHANNEL[0].TC_IER = (TC_IER_CPAS << channel);
return 0;
}
int timer_clear(tim_t tim, int channel)
{
if (channel >= TIMER_CHANNEL_NUMOF) {
return -1;
}
dev(tim)->TC_CHANNEL[0].TC_IDR = (TC_IDR_CPAS << channel);
return 0;
}
unsigned int timer_read(tim_t tim)
{
return dev(tim)->TC_CHANNEL[0].TC_CV;
}
void timer_start(tim_t tim)
{
dev(tim)->TC_CHANNEL[1].TC_CCR = (TC_CCR_CLKEN | TC_CCR_SWTRG);
}
void timer_stop(tim_t tim)
{
dev(tim)->TC_CHANNEL[1].TC_CCR = TC_CCR_CLKDIS;
}
static inline void isr_handler(tim_t tim)
{
uint32_t status = dev(tim)->TC_CHANNEL[0].TC_SR;
for (int i = 0; i < TIMER_CHANNEL_NUMOF; i++) {
if (status & (TC_SR_CPAS << i)) {
dev(tim)->TC_CHANNEL[0].TC_IDR = (TC_IDR_CPAS << i);
isr_ctx[tim].cb(isr_ctx[tim].arg, i);
}
}
cortexm_isr_end();
}
#ifdef TIMER_0_ISR
void TIMER_0_ISR(void)
{
isr_handler(0);
}
#endif
#ifdef TIMER_1_ISR
void TIMER_1_ISR(void)
{
isr_handler(1);
}
#endif
#ifdef TIMER_2_ISR
void TIMER_2_ISR(void)
{
isr_handler(2);
}
#endif