1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/sam3/periph/gpio.c
Marian Buschsieweke c2c2cc8592
drivers/periph_gpio: let gpio_read() return bool
Since https://github.com/RIOT-OS/RIOT/pull/20935 gpio_write()
uses a `bool` instead of an `int`. This does the same treatment for
`gpio_read()`.

This does indeed add an instruction to `gpio_read()` implementations.
However, users caring about an instruction more are better served with
`gpio_ll_read()` anyway. And `gpio_read() == 1` is often seen in
newcomer's code, which would now work as expected.
2024-10-23 13:24:09 +02:00

345 lines
7.9 KiB
C

/*
* Copyright (C) 2014 Hauke Petersen <devel@haukepetersen.de>
* 2015 Hamburg University of Applied Sciences
* 2015 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_sam3
* @ingroup drivers_periph_gpio
* @{
*
* @file
* @brief Low-level GPIO driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Tobias Fredersdorf <tobias.fredersdorf@haw-hamburg.de>
*
* @}
*/
#include "cpu.h"
#include "periph/gpio.h"
#include "periph_conf.h"
#include "periph_cpu.h"
#define ENABLE_DEBUG 0
#include "debug.h"
/**
* @brief Bit positions in the GPIO mode value
* @{
*/
#define MODE_BIT_IO (0x1)
#define MODE_BIT_PUE (0x2)
#define MODE_BIT_ODE (0x4)
/** @} */
#ifdef MODULE_PERIPH_GPIO_IRQ
/**
* @brief We store 4 bit for each external interrupt line (each pin) that can
* mapped to an entry in the exti_ctx table
*/
#define EXTI_MAP_LENGTH (16U)
/**
* @brief We allow for 7 (4-bit - 1) concurrent external interrupts to be set
*/
#define CTX_NUMOF (7U)
/**
* @brief Allocation of memory for 7 independent interrupt slots
*/
static gpio_isr_ctx_t exti_ctx[CTX_NUMOF];
/**
* @brief Allocation of 4 bit per pin to map a pin to an interrupt context
*/
static uint32_t exti_map[EXTI_MAP_LENGTH] = {
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff
};
/**
* @brief Get context for a specific pin
*/
static inline unsigned _ctx(int port, int pin)
{
return (exti_map[(port * 4) + (pin >> 3)] >> ((pin & 0x7) * 4)) & 0xf;
}
/**
* @brief Write an entry to the context map array
*/
static void _write_map(int port, int pin, int ctx)
{
exti_map[(port * 4) + (pin >> 3)] &= ~(0xf << ((pin & 0x7) * 4));
exti_map[(port * 4) + (pin >> 3)] |= (ctx << ((pin & 0x7) * 4));
}
/**
* @brief Find a free spot in the array containing the interrupt contexts
*/
static int _get_free_ctx(void)
{
for (unsigned i = 0; i < CTX_NUMOF; i++) {
if (exti_ctx[i].cb == NULL) {
return i;
}
}
return -1;
}
/**
* @brief Clear the context of the given pin
*/
static void _ctx_clear(int port, int pin)
{
unsigned ctx = _ctx(port, pin);
if (ctx < CTX_NUMOF) {
exti_ctx[ctx].cb = NULL;
_write_map(port, pin, CTX_NUMOF);
}
}
#endif /* MODULE_PERIPH_GPIO_IRQ */
/**
* @brief Extract the pin's port base address from the given pin identifier
*/
static inline Pio *_port(gpio_t pin)
{
return (Pio *)(pin & ~(0x1f));
}
/**
* @brief Extract the port number from the given pin identifier
*
* Isolating bits 9 to 12 of the port base addresses leads to unique port
* numbers.
*/
static inline int _port_num(gpio_t pin)
{
return (((pin >> 9) & 0x0f) - 7);
}
/**
* @brief Test if the given port is valid
*/
static bool _port_valid(Pio *port)
{
if (port == PIOA || port == PIOB || port == PIOC || port == PIOD) {
return true;
}
return false;
}
/**
* @brief Get the pin number from the pin identifier, encoded in the LSB 5 bit
*/
static inline int _pin_num(gpio_t pin)
{
return (pin & 0x1f);
}
int gpio_init(gpio_t pin, gpio_mode_t mode)
{
Pio *port = _port(pin);
int pin_num = _pin_num(pin);
int port_num = _port_num(pin);
/* make sure port is valid and no pull-down is selected*/
if (!_port_valid(port) || (mode == GPIO_IN_PD)) {
return -1;
}
/* power on the corresponding port */
PMC->PMC_PCER0 = (1 << (port_num + 11));
/* disable interrupt and clear context (to be safe) */
port->PIO_IDR = (1 << pin_num);
#ifdef MODULE_PERIPH_GPIO_IRQ
_ctx_clear(port_num, pin_num);
#endif /* MODULE_PERIPH_GPIO_IRQ */
/* give the PIO module the power over the corresponding pin */
port->PIO_PER = (1 << pin_num);
/* configure pin direction (in/out) */
if (mode & MODE_BIT_IO) {
port->PIO_OER = (1 << pin_num);
}
else {
port->PIO_ODR = (1 << pin_num);
}
/* set pull-up */
if (mode & MODE_BIT_PUE) {
port->PIO_PUER = (1 << pin_num);
}
else {
port->PIO_PUDR = (1 << pin_num);
}
/* set multi-driver (open-drain) mode */
if (mode & MODE_BIT_ODE) {
port->PIO_MDER = (1 << pin_num);
}
else {
port->PIO_MDDR = (1 << pin_num);
}
return 0;
}
void gpio_init_mux(gpio_t pin, gpio_mux_t mux)
{
/* power on the corresponding port */
PMC->PMC_PCER0 = (1 << (_port_num(pin) + 11));
/* give peripheral control over the pin */
_port(pin)->PIO_PDR = (1 << _pin_num(pin));
/* and configure the MUX */
_port(pin)->PIO_ABSR &= ~(1 << _pin_num(pin));
_port(pin)->PIO_ABSR |= (mux << _pin_num(pin));
}
void gpio_set(gpio_t pin)
{
_port(pin)->PIO_SODR = (1 << _pin_num(pin));
}
void gpio_clear(gpio_t pin)
{
_port(pin)->PIO_CODR = (1 << _pin_num(pin));
}
void gpio_toggle(gpio_t pin)
{
if (gpio_read(pin)) {
_port(pin)->PIO_CODR = (1 << _pin_num(pin));
} else {
_port(pin)->PIO_SODR = (1 << _pin_num(pin));
}
}
void gpio_write(gpio_t pin, bool value)
{
if (value) {
_port(pin)->PIO_SODR = (1 << _pin_num(pin));
} else {
_port(pin)->PIO_CODR = (1 << _pin_num(pin));
}
}
void gpio_irq_enable(gpio_t pin)
{
NVIC_EnableIRQ((1 << (_port_num(pin) + PIOA_IRQn)));
}
void gpio_irq_disable(gpio_t pin)
{
NVIC_DisableIRQ((1 << (_port_num(pin) + PIOA_IRQn)));
}
bool gpio_read(gpio_t pin)
{
Pio *port = _port(pin);
int pin_num = _pin_num(pin);
if (port->PIO_OSR & (1 << pin_num)) {
return (port->PIO_ODSR & (1 << pin_num)) ? 1 : 0;
}
else {
return (port->PIO_PDSR & (1 << pin_num)) ? 1 : 0;
}
}
#ifdef MODULE_PERIPH_GPIO_IRQ
int gpio_init_int(gpio_t pin, gpio_mode_t mode, gpio_flank_t flank,
gpio_cb_t cb, void *arg)
{
Pio *port = _port(pin);
int pin_num = _pin_num(pin);
int port_num = _port_num(pin);
/* make sure pin is valid */
if (!_port_valid(port)) {
return -1;
}
/* configure pin as input */
gpio_init(pin, mode);
/* try go grab a free spot in the context array */
int ctx_num = _get_free_ctx();
if (ctx_num < 0) {
return -1;
}
/* save context */
exti_ctx[ctx_num].cb = cb;
exti_ctx[ctx_num].arg = arg;
_write_map(port_num, pin_num, ctx_num);
/* set the active flank */
switch (flank) {
case GPIO_FALLING:
port->PIO_AIMER = (1 << pin_num);
port->PIO_ESR = (1 << pin_num);
port->PIO_FELLSR =(1 << pin_num);
break;
case GPIO_RISING:
port->PIO_AIMER = (1 << pin_num);
port->PIO_ESR = (1 << pin_num);
port->PIO_REHLSR = (1 << pin_num);
break;
case GPIO_BOTH:
port->PIO_AIMDR = (1 << pin_num);
break;
}
/* clean interrupt status register */
port->PIO_ISR;
/* enable the interrupt for the given channel */
NVIC_EnableIRQ(port_num + PIOA_IRQn);
port->PIO_IER = (1 << pin_num);
return 0;
}
static inline void isr_handler(Pio *port, int port_num)
{
/* take interrupt flags only from pins which interrupt is enabled */
uint32_t status = (port->PIO_ISR & port->PIO_IMR);
for (int i = 0; i < 32; i++) {
if (status & ((uint32_t)1 << i)) {
int ctx = _ctx(port_num, i);
exti_ctx[ctx].cb(exti_ctx[ctx].arg);
}
}
cortexm_isr_end();
}
void isr_pioa(void)
{
isr_handler(PIOA, PA);
}
void isr_piob(void)
{
isr_handler(PIOB, PB);
}
void isr_pioc(void)
{
isr_handler(PIOC, PC);
}
void isr_piod(void)
{
isr_handler(PIOD, PD);
}
#endif /* MODULE_PERIPH_GPIO_IRQ */