1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/gd32v/periph/spi.c
2023-02-06 07:45:59 +01:00

308 lines
8.6 KiB
C

/*
* Copyright (C) 2014 Hamburg University of Applied Sciences
* 2014-2017 Freie Universität Berlin
* 2016-2017 OTA keys S.A.
* 2023 Gunar Schorcht <gunar@schorcht.net>
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_gd32v
* @ingroup drivers_periph_spi
* @{
*
* @file
* @brief Low-level SPI driver implementation
*
*
* @author Peter Kietzmann <peter.kietzmann@haw-hamburg.de>
* @author Fabian Nack <nack@inf.fu-berlin.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Vincent Dupont <vincent@otakeys.com>
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
* @author Gunar Schorcht <gunar@schorcht.net>
*
* @}
*/
#include <assert.h>
#include "bitarithm.h"
#include "cpu.h"
#include "mutex.h"
#include "periph/gpio.h"
#include "periph/spi.h"
#include "pm_layered.h"
#define ENABLE_DEBUG 0
#include "debug.h"
/**
* @brief Number of bits to shift the BR value in the CR1 register
*/
#define BR_SHIFT (3U)
#define BR_MAX (7U)
#define SPI_CTL1_SETTINGS 0
/**
* @brief Allocate one lock per SPI device
*/
static mutex_t locks[SPI_NUMOF];
/**
* @brief Clock configuration cache
*/
static uint32_t clocks[SPI_NUMOF];
/**
* @brief Clock divider cache
*/
static uint8_t dividers[SPI_NUMOF];
static inline SPI_Type *dev(spi_t bus)
{
return spi_config[bus].dev;
}
/**
* @brief Multiplier for clock divider calculations
*
* Makes the divider calculation fixed point
*/
#define SPI_APB_CLOCK_SHIFT (4U)
#define SPI_APB_CLOCK_MULT (1U << SPI_APB_CLOCK_SHIFT)
static uint8_t _get_clkdiv(const spi_conf_t *conf, uint32_t clock)
{
uint32_t bus_clock = periph_apb_clk(conf->apbbus);
/* Shift bus_clock with SPI_APB_CLOCK_SHIFT to create a fixed point int */
uint32_t div = (bus_clock << SPI_APB_CLOCK_SHIFT) / (2 * clock);
DEBUG("[spi] clock: divider: %"PRIu32"\n", div);
/* Test if the divider is 2 or smaller, keeping the fixed point in mind */
if (div <= SPI_APB_CLOCK_MULT) {
return 0;
}
/* determine MSB and compensate back for the fixed point int shift */
uint8_t rounded_div = bitarithm_msb(div) - SPI_APB_CLOCK_SHIFT;
/* Determine if rounded_div is not a power of 2 */
if ((div & (div - 1)) != 0) {
/* increment by 1 to ensure that the clock speed at most the
* requested clock speed */
rounded_div++;
}
return rounded_div > BR_MAX ? BR_MAX : rounded_div;
}
void spi_init(spi_t bus)
{
assert(bus < SPI_NUMOF);
/* initialize device lock */
mutex_init(&locks[bus]);
/* trigger pin initialization */
spi_init_pins(bus);
periph_clk_en(spi_config[bus].apbbus, spi_config[bus].rcumask);
/* reset configuration */
dev(bus)->CTL0 = 0;
#ifdef SPI0_I2SCTL_I2SSEL_Msk
dev(bus)->I2SCTL = 0;
#endif
dev(bus)->CTL1 = SPI_CTL1_SETTINGS;
periph_clk_dis(spi_config[bus].apbbus, spi_config[bus].rcumask);
}
void spi_init_pins(spi_t bus)
{
if (spi_config[bus].sclk_pin == GPIO_PIN(PORT_B, 3) &&
spi_config[bus].miso_pin == GPIO_PIN(PORT_B, 4) &&
spi_config[bus].mosi_pin == GPIO_PIN(PORT_B, 5)) {
/* The remapping periph clock must first be enabled */
RCU->APB2EN |= RCU_APB2EN_AFEN_Msk;
/* Then the remap can occur */
AFIO->PCF0 |= AFIO_PCF0_SPI0_REMAP_Msk;
}
if (gpio_is_valid(spi_config[bus].sclk_pin)) {
gpio_init_af(spi_config[bus].sclk_pin, GPIO_AF_OUT_PP);
}
if (gpio_is_valid(spi_config[bus].mosi_pin)) {
gpio_init_af(spi_config[bus].mosi_pin, GPIO_AF_OUT_PP);
}
if (gpio_is_valid(spi_config[bus].miso_pin)) {
gpio_init(spi_config[bus].miso_pin, GPIO_IN);
}
}
int spi_init_cs(spi_t bus, spi_cs_t cs)
{
if (bus >= SPI_NUMOF) {
return SPI_NODEV;
}
if (!gpio_is_valid(cs) ||
(((cs & SPI_HWCS_MASK) == SPI_HWCS_MASK) && (cs & ~(SPI_HWCS_MASK)))) {
return SPI_NOCS;
}
if (cs == SPI_HWCS_MASK) {
if (!gpio_is_valid(spi_config[bus].cs_pin)) {
return SPI_NOCS;
}
gpio_init_af(spi_config[bus].cs_pin, GPIO_AF_OUT_PP);
}
else {
gpio_init((gpio_t)cs, GPIO_OUT);
gpio_set((gpio_t)cs);
}
return SPI_OK;
}
#ifdef MODULE_PERIPH_SPI_GPIO_MODE
int spi_init_with_gpio_mode(spi_t bus, const spi_gpio_mode_t* mode)
{
assert(bus < SPI_NUMOF);
int ret = 0;
/* This has no effect on GD32VF103 */
return ret;
}
#endif
void spi_acquire(spi_t bus, spi_cs_t cs, spi_mode_t mode, spi_clk_t clk)
{
assert((unsigned)bus < SPI_NUMOF);
/* lock bus */
mutex_lock(&locks[bus]);
/* block DEEP_SLEEP mode */
pm_block(GD32V_PM_DEEPSLEEP);
/* enable SPI device clock */
periph_clk_en(spi_config[bus].apbbus, spi_config[bus].rcumask);
/* enable device */
if (clk != clocks[bus]) {
dividers[bus] = _get_clkdiv(&spi_config[bus], clk);
clocks[bus] = clk;
}
uint8_t br = dividers[bus];
DEBUG("[spi] acquire: requested clock: %"PRIu32", resulting clock: %"PRIu32
" BR divider: %u\n",
clk,
periph_apb_clk(spi_config[bus].apbbus)/(1 << (br + 1)),
br);
uint16_t ctl0_settings = ((br << BR_SHIFT) | mode | SPI0_CTL0_MSTMOD_Msk);
/* Settings to add to CTL1 in addition to SPI_CTL1_SETTINGS */
uint16_t ctl1_extra_settings = 0;
if (cs != SPI_HWCS_MASK) {
ctl0_settings |= (SPI0_CTL0_SWNSSEN_Msk | SPI0_CTL0_SWNSS_Msk);
}
else {
ctl1_extra_settings = (SPI0_CTL1_NSSDRV_Msk);
}
dev(bus)->CTL0 = ctl0_settings;
/* Only modify CR2 if needed */
if (ctl1_extra_settings) {
dev(bus)->CTL1 = (SPI_CTL1_SETTINGS | ctl1_extra_settings);
}
}
void spi_release(spi_t bus)
{
/* disable device and release lock */
dev(bus)->CTL0 = 0;
dev(bus)->CTL1 = SPI_CTL1_SETTINGS; /* Clear the DMA and SSOE flags */
periph_clk_dis(spi_config[bus].apbbus, spi_config[bus].rcumask);
/* unblock DEEP_SLEEP mode */
pm_unblock(GD32V_PM_DEEPSLEEP);
mutex_unlock(&locks[bus]);
}
static inline void _wait_for_end(spi_t bus)
{
/* make sure the transfer is completed before continuing, see reference
* manual(s) -> section 'Disabling the SPI' */
while (!(dev(bus)->STAT & SPI0_STAT_TBE_Msk)) {}
while (dev(bus)->STAT & SPI0_STAT_TRANS_Msk) {}
}
static void _transfer_no_dma(spi_t bus, const void *out, void *in, size_t len)
{
const uint8_t *outbuf = out;
uint8_t *inbuf = in;
/* we need to recast the data register to uint_8 to force 8-bit access */
volatile uint8_t *DR = (volatile uint8_t*)&(dev(bus)->DATA);
/* transfer data, use shortpath if only sending data */
if (!inbuf) {
for (size_t i = 0; i < len; i++) {
while (!(dev(bus)->STAT & SPI0_STAT_TBE_Msk)) {}
*DR = outbuf[i];
}
/* wait until everything is finished and empty the receive buffer */
while (!(dev(bus)->STAT & SPI0_STAT_TBE_Msk)) {}
while (dev(bus)->STAT & SPI0_STAT_TRANS_Msk) {}
while (dev(bus)->STAT & SPI0_STAT_RBNE_Msk) {
dev(bus)->DATA; /* we might just read 2 bytes at once here */
}
}
else if (!outbuf) {
for (size_t i = 0; i < len; i++) {
while (!(dev(bus)->STAT & SPI0_STAT_TBE_Msk)) {}
*DR = 0;
while (!(dev(bus)->STAT & SPI0_STAT_RBNE_Msk)) {}
inbuf[i] = *DR;
}
}
else {
for (size_t i = 0; i < len; i++) {
while (!(dev(bus)->STAT & SPI0_STAT_TBE_Msk)) {}
*DR = outbuf[i];
while (!(dev(bus)->STAT & SPI0_STAT_RBNE_Msk)) {}
inbuf[i] = *DR;
}
}
_wait_for_end(bus);
}
void spi_transfer_bytes(spi_t bus, spi_cs_t cs, bool cont,
const void *out, void *in, size_t len)
{
/* make sure at least one input or one output buffer is given */
assert(out || in);
/* active the given chip select line */
dev(bus)->CTL0 |= (SPI0_CTL0_SPIEN_Msk); /* this pulls the HW CS line low */
if ((cs != SPI_HWCS_MASK) && gpio_is_valid(cs)) {
gpio_clear((gpio_t)cs);
}
_transfer_no_dma(bus, out, in, len);
/* release the chip select if not specified differently */
if ((!cont) && gpio_is_valid(cs)) {
dev(bus)->CTL0 &= ~(SPI0_CTL0_SPIEN_Msk); /* pull HW CS line high */
if (cs != SPI_HWCS_MASK) {
gpio_set((gpio_t)cs);
}
}
}