1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/saml21/periph/uart.c

258 lines
6.8 KiB
C

/*
* Copyright (C) 2014 Freie Universität Berlin
* 2015 Kaspar Schleiser <kaspar@schleiser.de>
* 2015 FreshTemp, LLC.
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup driver_periph
* @{
*
* @file uart.c
* @brief Low-level UART driver implementation
*
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
* @author Troels Hoffmeyer <troels.d.hoffmeyer@gmail.com>
*
* @}
*/
#include "board.h"
#include "cpu.h"
#include "periph/uart.h"
#include "periph_conf.h"
#include "sched.h"
#include "thread.h"
/* guard file in case no UART device was specified */
#if UART_NUMOF
/**
* @brief Each UART device has to store two callbacks.
*/
typedef struct {
uart_rx_cb_t rx_cb;
uart_tx_cb_t tx_cb;
void *arg;
} uart_conf_t;
/**
* @brief Unified interrupt handler for all UART devices
*
* @param uartnum the number of the UART that triggered the ISR
* @param uart the UART device that triggered the ISR
*/
static inline void irq_handler(uart_t uartnum, SercomUsart *uart);
/**
* @brief Allocate memory to store the callback functions.
*/
static uart_conf_t uart_config[UART_NUMOF];
static uint64_t _long_division(uint64_t n, uint64_t d);
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, uart_tx_cb_t tx_cb, void *arg)
{
/* initialize basic functionality */
int res = uart_init_blocking(uart, baudrate);
if (res != 0) {
return res;
}
/* register callbacks */
uart_config[uart].rx_cb = rx_cb;
uart_config[uart].tx_cb = tx_cb;
uart_config[uart].arg = arg;
/* configure interrupts and enable RX interrupt */
switch (uart) {
case UART_0:
NVIC_SetPriority(UART_0_IRQ, UART_IRQ_PRIO);
NVIC_EnableIRQ(UART_0_IRQ);
UART_0_DEV.INTENSET.bit.RXC = 1;
break;
}
return 0;
}
int uart_init_blocking(uart_t uart, uint32_t baudrate)
{
/* Calculate the BAUD value */
uint64_t temp1 = ((16 * ((uint64_t)baudrate)) << 32);
uint64_t ratio = _long_division(temp1 , UART_0_REF_F);
uint64_t scale = ((uint64_t)1 << 32) - ratio;
uint64_t baud_calculated = (65536 * scale) >> 32;
switch (uart) {
#if UART_0_EN
case UART_0:
/* Enable the peripheral channel */
GCLK->PCHCTRL[SERCOM3_GCLK_ID_CORE].reg |= GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN_GCLK0;
while (!(GCLK->PCHCTRL[SERCOM3_GCLK_ID_CORE].reg & GCLK_PCHCTRL_CHEN)) {
/* Wait for clock synchronization */
}
MCLK->APBCMASK.reg |= MCLK_APBCMASK_SERCOM3;
/* configure PINS to input/output*/
UART_0_PORT.DIRSET.reg = (1 << UART_0_TX_PIN); /* tx's direction is output */
UART_0_PORT.PINCFG[UART_0_RX_PIN % 32].bit.INEN = true; /* buffer rx pin's value */
/* enable PMUX for pins and set to config C. */
UART_0_PORT.WRCONFIG.reg = PORT_WRCONFIG_WRPINCFG \
| PORT_WRCONFIG_WRPMUX \
| PORT_WRCONFIG_PMUX(0x2) \
| PORT_WRCONFIG_PMUXEN \
| UART_0_PINS;
UART_0_DEV.CTRLA.bit.ENABLE = 0; //Disable to write, need to sync tho
while(UART_0_DEV.SYNCBUSY.bit.ENABLE);
/* set to LSB, asynchronous mode without parity, PAD0 Tx, PAD1 Rx,
* 16x over-sampling, internal clk */
UART_0_DEV.CTRLA.reg = SERCOM_USART_CTRLA_DORD \
| SERCOM_USART_CTRLA_FORM(0x0) \
| SERCOM_USART_CTRLA_SAMPA(0x0) \
| SERCOM_USART_CTRLA_TXPO(0x0) \
| SERCOM_USART_CTRLA_RXPO(0x1) \
| SERCOM_USART_CTRLA_SAMPR(0x0) \
| SERCOM_USART_CTRLA_MODE(0x1) \
| (UART_0_RUNSTDBY ? SERCOM_USART_CTRLA_RUNSTDBY : 0);
/* Set baud rate */
UART_0_DEV.BAUD.bit.BAUD = baud_calculated;
/* enable receiver and transmitter, one stop bit*/
UART_0_DEV.CTRLB.reg = (SERCOM_USART_CTRLB_RXEN | SERCOM_USART_CTRLB_TXEN);
while(UART_0_DEV.SYNCBUSY.bit.CTRLB);
break;
#endif
}
uart_poweron(uart);
return 0;
}
void uart_tx_begin(uart_t uart)
{
}
void uart_tx_end(uart_t uart)
{
}
int uart_write(uart_t uart, char data)
{
switch (uart) {
case UART_0:
UART_0_DEV.DATA.reg = (uint8_t)data;
break;
}
return 1;
}
int uart_read_blocking(uart_t uart, char *data)
{
switch (uart) {
case UART_0:
while (UART_0_DEV.INTFLAG.bit.RXC == 0);
*data = (char)(0x00ff & UART_0_DEV.DATA.reg);
break;
}
return 1;
}
int uart_write_blocking(uart_t uart, char data)
{
switch (uart) {
case UART_0:
while (UART_0_DEV.INTFLAG.bit.DRE == 0);
while(UART_0_DEV.SYNCBUSY.bit.ENABLE);
UART_0_DEV.DATA.reg = (uint8_t)data;
while (UART_0_DEV.INTFLAG.reg & SERCOM_USART_INTFLAG_TXC);
break;
}
return 1;
}
void uart_poweron(uart_t uart)
{
while (UART_0_DEV.SYNCBUSY.reg);
UART_0_DEV.CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE;
}
void uart_poweroff(uart_t uart)
{
while (UART_0_DEV.SYNCBUSY.reg);
UART_0_DEV.CTRLA.reg &= ~SERCOM_USART_CTRLA_ENABLE;
}
#if UART_0_EN
void UART_0_ISR(void)
{
irq_handler(UART_0, &UART_0_DEV);
}
#endif
static inline void irq_handler(uint8_t uartnum, SercomUsart *dev)
{
if (dev->INTFLAG.bit.RXC) {
/* cleared by reading DATA regiser */
char data = (char)dev->DATA.reg;
uart_config[uartnum].rx_cb(uart_config[uartnum].arg, data);
}
else if (dev->INTFLAG.bit.TXC) {
if (uart_config[uartnum].tx_cb(uart_config[uartnum].arg) == 0) {
/* TXC flag is also cleared by writing data to DATA register */
if (dev->INTFLAG.bit.TXC) {
/* cleared by writing 1 to TXC */
dev->INTFLAG.bit.TXC = 1;
}
}
}
else if (dev->INTFLAG.bit.ERROR) {
/* clear error flag */
dev->INTFLAG.bit.ERROR = 1;
}
if (sched_context_switch_request) {
thread_yield();
}
}
static uint64_t _long_division(uint64_t n, uint64_t d)
{
int32_t i;
uint64_t q = 0, r = 0, bit_shift;
for (i = 63; i >= 0; i--) {
bit_shift = (uint64_t)1 << i;
r = r << 1;
if (n & bit_shift) {
r |= 0x01;
}
if (r >= d) {
r = r - d;
q |= bit_shift;
}
}
return q;
}
#endif /* UART_NUMOF */