mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2024-12-29 04:50:03 +01:00
301 lines
8.9 KiB
C
301 lines
8.9 KiB
C
/*-
|
|
* Copyright 2005 Colin Percival
|
|
* Copyright 2013 Christian Mehlis & René Kijewski
|
|
* Copyright 2016 Martin Landsmann <martin.landsmann@haw-hamburg.de>
|
|
* Copyright 2016 OTA keys S.A.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD: src/lib/libmd/sha256c.c,v 1.2 2006/01/17 15:35:56 phk Exp $
|
|
*/
|
|
|
|
/**
|
|
* @ingroup sys_hashes
|
|
* @{
|
|
*
|
|
* @file
|
|
* @brief SHA256 hash function implementation
|
|
*
|
|
* @author Colin Percival
|
|
* @author Christian Mehlis
|
|
* @author Rene Kijewski
|
|
* @author Martin Landsmann
|
|
* @author Hermann Lelong
|
|
*
|
|
* @}
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "hashes/sha256.h"
|
|
#include "hashes/sha2xx_common.h"
|
|
|
|
|
|
/* SHA-256 initialization. Begins a SHA-256 operation. */
|
|
void sha256_init(sha256_context_t *ctx)
|
|
{
|
|
/* Zero bits processed so far */
|
|
ctx->count[0] = ctx->count[1] = 0;
|
|
|
|
/* Magic initialization constants */
|
|
ctx->state[0] = 0x6A09E667;
|
|
ctx->state[1] = 0xBB67AE85;
|
|
ctx->state[2] = 0x3C6EF372;
|
|
ctx->state[3] = 0xA54FF53A;
|
|
ctx->state[4] = 0x510E527F;
|
|
ctx->state[5] = 0x9B05688C;
|
|
ctx->state[6] = 0x1F83D9AB;
|
|
ctx->state[7] = 0x5BE0CD19;
|
|
}
|
|
|
|
void *sha256(const void *data, size_t len, void *digest)
|
|
{
|
|
sha256_context_t c;
|
|
static unsigned char m[SHA256_DIGEST_LENGTH];
|
|
|
|
if (digest == NULL) {
|
|
digest = m;
|
|
}
|
|
|
|
sha256_init(&c);
|
|
sha2xx_update(&c, data, len);
|
|
sha256_final(&c, digest);
|
|
|
|
return digest;
|
|
}
|
|
|
|
|
|
void hmac_sha256_init(hmac_context_t *ctx, const void *key, size_t key_length)
|
|
{
|
|
unsigned char k[SHA256_INTERNAL_BLOCK_SIZE];
|
|
|
|
memset((void *)k, 0x00, SHA256_INTERNAL_BLOCK_SIZE);
|
|
|
|
if (key_length > SHA256_INTERNAL_BLOCK_SIZE) {
|
|
sha256(key, key_length, k);
|
|
}
|
|
else {
|
|
memcpy((void *)k, key, key_length);
|
|
}
|
|
|
|
/*
|
|
* create the inner and outer keypads
|
|
* rising hamming distance enforcing i_* and o_* are distinct
|
|
* in at least one bit
|
|
*/
|
|
unsigned char o_key_pad[SHA256_INTERNAL_BLOCK_SIZE];
|
|
unsigned char i_key_pad[SHA256_INTERNAL_BLOCK_SIZE];
|
|
|
|
for (size_t i = 0; i < SHA256_INTERNAL_BLOCK_SIZE; ++i) {
|
|
o_key_pad[i] = 0x5c ^ k[i];
|
|
i_key_pad[i] = 0x36 ^ k[i];
|
|
}
|
|
|
|
/*
|
|
* Initiate calculation of the inner hash
|
|
* tmp = hash(i_key_pad CONCAT message)
|
|
*/
|
|
sha256_init(&ctx->c_in);
|
|
sha2xx_update(&ctx->c_in, i_key_pad, SHA256_INTERNAL_BLOCK_SIZE);
|
|
|
|
/*
|
|
* Initiate calculation of the outer hash
|
|
* result = hash(o_key_pad CONCAT tmp)
|
|
*/
|
|
sha256_init(&ctx->c_out);
|
|
sha2xx_update(&ctx->c_out, o_key_pad, SHA256_INTERNAL_BLOCK_SIZE);
|
|
|
|
}
|
|
|
|
void hmac_sha256_update(hmac_context_t *ctx, const void *data, size_t len)
|
|
{
|
|
sha2xx_update(&ctx->c_in, data, len);
|
|
}
|
|
|
|
void hmac_sha256_final(hmac_context_t *ctx, void *digest)
|
|
{
|
|
unsigned char tmp[SHA256_DIGEST_LENGTH];
|
|
|
|
static unsigned char m[SHA256_DIGEST_LENGTH];
|
|
|
|
if (digest == NULL) {
|
|
digest = m;
|
|
}
|
|
|
|
sha256_final(&ctx->c_in, tmp);
|
|
sha2xx_update(&ctx->c_out, tmp, SHA256_DIGEST_LENGTH);
|
|
sha256_final(&ctx->c_out, digest);
|
|
}
|
|
|
|
const void *hmac_sha256(const void *key, size_t key_length,
|
|
const void *data, size_t len, void *digest)
|
|
{
|
|
|
|
hmac_context_t ctx;
|
|
|
|
hmac_sha256_init(&ctx, key, key_length);
|
|
hmac_sha256_update(&ctx,data, len);
|
|
hmac_sha256_final(&ctx, digest);
|
|
|
|
return digest;
|
|
}
|
|
|
|
/**
|
|
* @brief helper to compute sha256 inplace for the given buffer
|
|
*
|
|
* @param[in, out] element the buffer to compute a sha256 and store it back to it
|
|
*
|
|
*/
|
|
static inline void sha256_inplace(unsigned char element[SHA256_DIGEST_LENGTH])
|
|
{
|
|
sha256_context_t ctx;
|
|
|
|
sha256_init(&ctx);
|
|
sha2xx_update(&ctx, element, SHA256_DIGEST_LENGTH);
|
|
sha256_final(&ctx, element);
|
|
}
|
|
|
|
void *sha256_chain(const void *seed, size_t seed_length,
|
|
size_t elements, void *tail_element)
|
|
{
|
|
unsigned char tmp_element[SHA256_DIGEST_LENGTH];
|
|
|
|
/* assert if no sha256-chain can be created */
|
|
assert(elements >= 2);
|
|
|
|
/* 1st iteration */
|
|
sha256(seed, seed_length, tmp_element);
|
|
|
|
/* perform consecutive iterations minus the first one */
|
|
for (size_t i = 0; i < (elements - 1); ++i) {
|
|
sha256_inplace(tmp_element);
|
|
}
|
|
|
|
/* store the result */
|
|
memcpy(tail_element, tmp_element, SHA256_DIGEST_LENGTH);
|
|
|
|
return tail_element;
|
|
}
|
|
|
|
void *sha256_chain_with_waypoints(const void *seed,
|
|
size_t seed_length,
|
|
size_t elements,
|
|
void *tail_element,
|
|
sha256_chain_idx_elm_t *waypoints,
|
|
size_t *waypoints_length)
|
|
{
|
|
/* assert if no sha256-chain can be created */
|
|
assert(elements >= 2);
|
|
|
|
/* assert to prevent division by 0 */
|
|
assert(*waypoints_length > 0);
|
|
|
|
/* assert if no waypoints can be created */
|
|
assert(*waypoints_length > 1);
|
|
|
|
/* if we have enough space we store the whole chain */
|
|
if (*waypoints_length >= elements) {
|
|
/* 1st iteration */
|
|
sha256(seed, seed_length, waypoints[0].element);
|
|
waypoints[0].index = 0;
|
|
|
|
/* perform consecutive iterations starting at index 1*/
|
|
for (size_t i = 1; i < elements; ++i) {
|
|
sha256_context_t ctx;
|
|
sha256_init(&ctx);
|
|
sha2xx_update(&ctx, waypoints[(i - 1)].element, SHA256_DIGEST_LENGTH);
|
|
sha256_final(&ctx, waypoints[i].element);
|
|
waypoints[i].index = i;
|
|
}
|
|
|
|
/* store the result */
|
|
memcpy(tail_element, waypoints[(elements - 1)].element, SHA256_DIGEST_LENGTH);
|
|
*waypoints_length = (elements - 1);
|
|
|
|
return tail_element;
|
|
}
|
|
else {
|
|
unsigned char tmp_element[SHA256_DIGEST_LENGTH];
|
|
size_t waypoint_streak = (elements / *waypoints_length);
|
|
|
|
/* 1st waypoint iteration */
|
|
sha256(seed, seed_length, tmp_element);
|
|
for (size_t i = 1; i < waypoint_streak; ++i) {
|
|
sha256_inplace(tmp_element);
|
|
}
|
|
memcpy(waypoints[0].element, tmp_element, SHA256_DIGEST_LENGTH);
|
|
waypoints[0].index = (waypoint_streak - 1);
|
|
|
|
/* index of the current computed element in the chain */
|
|
size_t index = (waypoint_streak - 1);
|
|
|
|
/* consecutive waypoint iterations */
|
|
size_t j = 1;
|
|
for (; j < *waypoints_length; ++j) {
|
|
for (size_t i = 0; i < waypoint_streak; ++i) {
|
|
sha256_inplace(tmp_element);
|
|
index++;
|
|
}
|
|
memcpy(waypoints[j].element, tmp_element, SHA256_DIGEST_LENGTH);
|
|
waypoints[j].index = index;
|
|
}
|
|
|
|
/* store/pass the last used index in the waypoint array */
|
|
*waypoints_length = (j - 1);
|
|
|
|
/* remaining iterations down to elements */
|
|
for (size_t i = index; i < (elements - 1); ++i) {
|
|
sha256_inplace(tmp_element);
|
|
}
|
|
|
|
/* store the result */
|
|
memcpy(tail_element, tmp_element, SHA256_DIGEST_LENGTH);
|
|
|
|
return tail_element;
|
|
}
|
|
}
|
|
|
|
int sha256_chain_verify_element(void *element,
|
|
size_t element_index,
|
|
void *tail_element,
|
|
size_t chain_length)
|
|
{
|
|
unsigned char tmp_element[SHA256_DIGEST_LENGTH];
|
|
|
|
int delta_count = (chain_length - element_index);
|
|
|
|
/* assert if we have an index mismatch */
|
|
assert(delta_count >= 1);
|
|
|
|
memcpy((void *)tmp_element, element, SHA256_DIGEST_LENGTH);
|
|
|
|
/* perform all consecutive iterations down to tail_element */
|
|
for (int i = 0; i < (delta_count - 1); ++i) {
|
|
sha256_inplace(tmp_element);
|
|
}
|
|
|
|
/* return if the computed element equals the tail_element */
|
|
return (memcmp(tmp_element, tail_element, SHA256_DIGEST_LENGTH) != 0);
|
|
}
|