1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-17 22:52:45 +01:00
RIOT/cpu/esp_common/freertos/queue.c
Gunar Schorcht 35676ca712 cpu/esp_common: fix of blocking mechanism in FreeRTOS queus
When FreeRTOS semaphores, as required by ESP-IDF, are used together with `gnrc_netif`, RIOT may crash if `STATUS_RECEIVE_BLOCKED` is used as a blocking mechanism in the FreeRTOS adaptation layer. The reason for this is that `gnrc_netif` uses thread flags since PR #16748. If the `gnrc_netif` thread is blocked because of a FreeRTOS semaphore, and is thus in `STATUS_RECEIVE_BLOCKED` state, the `_msg_send` function will cause a crash because it then assumes that `target->wait_data` contains a pointer to a message of type `msg_t`, but by using thread flags it contains the flag mask. This situation can happen if the ESP hardware is used while another thread is sending something timer controlled to the `gnrc_netif` thread.

To solve this problem `STATUS_MUTEX_LOCKED` is used instead of `STATUS_RECEIVE_BLOCKED` and `STATUS_SEND_BLOCKED`
2022-08-24 09:05:25 +02:00

522 lines
19 KiB
C

/*
* Copyright (C) 2019 Gunar Schorcht
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*
* FreeRTOS to RIOT-OS adaption module for source code compatibility
*/
#ifndef DOXYGEN
#define ENABLE_DEBUG 0
#include "debug.h"
#include <assert.h>
#include <string.h>
#include "esp_common.h"
#include "esp_attr.h"
#include "irq_arch.h"
#include "log.h"
#include "mutex.h"
#include "rmutex.h"
#include "syscalls.h"
#include "thread.h"
#if IS_USED(MODULE_ZTIMER_MSEC)
#include "ztimer.h"
#endif
#include "rom/ets_sys.h"
#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "freertos/task.h"
/*
* In FreeRTOS different types of semaphores, mutexes and queues are all
* mapped to a single generic queue type. With all these different types,
* single functions for send, receive, give and take are then used. To be
* able to dsitinguish between these different types in RIOT, we need typed
* objects.
*/
typedef struct {
uint8_t type; /* type of the queue, MUST be the first element */
list_node_t sending; /* threads that are waiting to send */
list_node_t receiving; /* threads that are waiting to receive */
uint8_t* queue; /* the queue of waiting items */
uint32_t item_size; /* size of each item in the queue */
uint32_t item_num; /* num of items that can be stored in queue */
uint32_t item_front; /* first item in queue */
uint32_t item_tail; /* last item in queue */
uint32_t item_level; /* num of items stored in queue */
} _queue_t;
QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength,
const UBaseType_t uxItemSize,
const uint8_t ucQueueType )
{
DEBUG("%s pid=%d len=%u size=%u type=%u\n", __func__,
thread_getpid(), uxQueueLength, uxItemSize, ucQueueType);
uint32_t queue_size = uxQueueLength * uxItemSize;
_queue_t* queue = malloc(sizeof(_queue_t) + queue_size);
assert(queue != NULL);
memset(queue, 0, sizeof(_queue_t) + queue_size);
queue->type = ucQueueType;
queue->receiving.next = NULL;
queue->sending.next = NULL;
queue->queue = (queue_size) ? (uint8_t*)queue + sizeof(_queue_t) : NULL;
queue->item_num = uxQueueLength;
queue->item_size = uxItemSize;
queue->item_front = 0;
queue->item_tail = 0;
queue->item_level = 0;
DEBUG("queue=%p\n", queue);
return queue;
}
#define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 )
QueueHandle_t xQueueCreateCountingSemaphore (const UBaseType_t uxMaxCount,
const UBaseType_t uxInitialCount)
{
_queue_t* queue;
assert(uxMaxCount != 0);
assert(uxInitialCount <= uxMaxCount);
queue = xQueueGenericCreate(uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH,
queueQUEUE_TYPE_COUNTING_SEMAPHORE);
DEBUG("%s pid=%d queue=%p max=%d initial=%d\n", __func__,
thread_getpid(), queue, uxMaxCount, uxInitialCount);
if (queue != NULL) {
queue->item_level = uxInitialCount;
queue->item_tail = (queue->item_front + queue->item_level) % queue->item_num;
}
return queue;
}
void vQueueDelete( QueueHandle_t xQueue )
{
DEBUG("%s pid=%d queue=%p\n", __func__, thread_getpid(), xQueue);
assert(xQueue != NULL);
free(xQueue);
}
BaseType_t IRAM_ATTR xQueueReset( QueueHandle_t xQueue )
{
DEBUG("%s pid=%d queue=%p\n", __func__, thread_getpid(), xQueue);
assert(xQueue != NULL);
vTaskEnterCritical(0);
_queue_t* queue = (_queue_t*)xQueue;
queue->item_front = 0;
queue->item_tail = 0;
queue->item_level = 0;
/* return if there is no waiting sending thread */
if (queue->sending.next == NULL) {
DEBUG("%s pid=%d queue=%p return pdPASS\n", __func__,
thread_getpid(), xQueue);
vTaskExitCritical(0);
return pdPASS;
}
/* otherwise unlock the waiting sending thread */
list_node_t *next = list_remove_head(&queue->sending);
thread_t *proc = container_of((clist_node_t*)next, thread_t, rq_entry);
sched_set_status(proc, STATUS_PENDING);
/* test whether context switch is required */
bool ctx_switch = proc->priority < thread_get_priority(thread_get_active());
DEBUG("%s pid=%d queue=%p unlock waiting pid=%d switch=%d\n",
__func__, thread_getpid(), xQueue, proc->pid, ctx_switch);
if (ctx_switch) {
vTaskExitCritical(0);
/* sets only the sched_context_switch_request in ISRs */
sched_switch(proc->priority);
}
else {
vTaskExitCritical(0);
}
return pdPASS;
}
#if IS_USED(MODULE_ZTIMER_MSEC)
/* descriptor for timeout handling for a thread that is waiting in a queue */
typedef struct {
thread_t *thread; /* the thread */
list_node_t *queue; /* the queue in which it is waiting */
bool timeout; /* timeout occurred */
} _queue_waiting_thread_t;
static void _queue_timeout(void *arg)
{
_queue_waiting_thread_t *wtd = arg;
assert(wtd != NULL);
assert(wtd->queue != NULL);
assert(wtd->thread != NULL);
vTaskEnterCritical(0);
/* remove the thread from the waiting queue */
list_node_t *node = (list_node_t *)&(wtd->thread->rq_entry);
list_remove(wtd->queue, node);
/* unblock the waintg thread */
sched_set_status(wtd->thread, STATUS_PENDING);
sched_context_switch_request =
wtd->thread->priority < thread_get_priority(thread_get_active());
wtd->timeout = true;
vTaskExitCritical(0);
}
#endif
BaseType_t IRAM_ATTR _queue_generic_send(QueueHandle_t xQueue,
const void * const pvItemToQueue,
const BaseType_t xCopyPosition,
TickType_t xTicksToWait,
BaseType_t * const pxHigherPriorityTaskWoken)
{
DEBUG("%s pid=%d prio=%d queue=%p pos=%d wait=%"PRIu32" woken=%p isr=%d\n", __func__,
thread_getpid(), thread_get_priority(thread_get_active()),
xQueue, xCopyPosition, xTicksToWait, pxHigherPriorityTaskWoken,
irq_is_in());
assert(xQueue != NULL);
_queue_t* queue = (_queue_t*)xQueue;
while (1) {
vTaskEnterCritical(0);
/* is there still space in the queue */
if (queue->item_level < queue->item_num || xCopyPosition == queueOVERWRITE) {
uint32_t write_pos;
/* determine the write position in the queue and update positions */
if (xCopyPosition == queueSEND_TO_BACK) {
write_pos = queue->item_tail;
queue->item_tail = (queue->item_tail + 1) % queue->item_num;
queue->item_level++;
}
else if (xCopyPosition == queueSEND_TO_FRONT) {
queue->item_front = (queue->item_front - 1) % queue->item_num;
queue->item_level++;
write_pos = queue->item_front;
}
else { /* queueOVERWRITE */
write_pos = queue->item_front;
if (queue->item_level == 0) {
queue->item_level++;
}
}
/* if the item has no 0 size, copy it to the according place in queue */
if (queue->item_size && queue->queue && pvItemToQueue) {
memcpy(queue->queue + write_pos * queue->item_size,
pvItemToQueue, queue->item_size);
}
/* indicates a required context switch */
bool ctx_switch = false;
/* unlock waiting receiving thread */
if (queue->receiving.next != NULL) {
list_node_t *next = list_remove_head(&queue->receiving);
thread_t *proc = container_of((clist_node_t*)next, thread_t, rq_entry);
sched_set_status(proc, STATUS_PENDING);
ctx_switch = proc->priority < thread_get_priority(thread_get_active());
DEBUG("%s pid=%d queue=%p unlock waiting pid=%d switch=%d\n",
__func__, thread_getpid(), xQueue, proc->pid, ctx_switch);
}
if (ctx_switch && pxHigherPriorityTaskWoken) {
*pxHigherPriorityTaskWoken = pdTRUE;
vTaskExitCritical(0);
}
else if (ctx_switch) {
vTaskExitCritical(0);
/* sets only the sched_context_switch_request in ISRs */
thread_yield_higher();
}
else {
vTaskExitCritical(0);
}
DEBUG("%s pid=%d queue=%p return pdPASS\n", __func__,
thread_getpid(), xQueue);
/* in all cases vTaskExitCritical has been called already */
return pdPASS;
}
else if (xTicksToWait == 0 || irq_is_in()) {
/* if there was no space and timeout = 0, return with error */
DEBUG("%s pid=%d queue=%p return errQUEUE_FULL\n", __func__,
thread_getpid(), xQueue);
vTaskExitCritical(0);
return errQUEUE_FULL;
}
else {
/* suspend the calling thread to wait for space in the queue */
thread_t *me = thread_get_active();
sched_set_status(me, STATUS_MUTEX_BLOCKED);
/* waiting list is sorted by priority */
thread_add_to_list(&queue->sending, me);
DEBUG("%s pid=%d queue=%p suspended calling thread\n", __func__,
thread_getpid(), xQueue);
#if IS_USED(MODULE_ZTIMER_MSEC)
_queue_waiting_thread_t wdt = { .queue = &queue->sending,
.thread = me,
.timeout = false };
ztimer_t tm = { .callback = _queue_timeout,
.arg = &wdt };
if (xTicksToWait < portMAX_DELAY) {
ztimer_set(ZTIMER_MSEC, &tm, xTicksToWait * portTICK_PERIOD_MS);
}
#else
assert((xTicksToWait == 0) || (xTicksToWait == portMAX_DELAY));
#endif
vTaskExitCritical(0);
thread_yield_higher();
#if IS_USED(MODULE_ZTIMER_MSEC)
vTaskEnterCritical(0);
if (xTicksToWait < portMAX_DELAY) {
ztimer_remove(ZTIMER_MSEC, &tm);
if (wdt.timeout) {
vTaskExitCritical(0);
return errQUEUE_FULL;
}
}
vTaskExitCritical(0);
#endif
DEBUG("%s pid=%d queue=%p continue calling thread\n", __func__,
thread_getpid(), xQueue);
}
/* in all cases vTaskExitCritical has been called already */
}
return errQUEUE_FULL;
}
BaseType_t IRAM_ATTR _queue_generic_recv (QueueHandle_t xQueue,
void * const pvBuffer,
TickType_t xTicksToWait,
const BaseType_t xJustPeeking,
BaseType_t * const pxHigherPriorityTaskWoken)
{
DEBUG("%s pid=%d prio=%d queue=%p wait=%"PRIu32" peek=%u woken=%p isr=%d\n", __func__,
thread_getpid(), thread_get_priority(thread_get_active()),
xQueue, xTicksToWait, xJustPeeking, pxHigherPriorityTaskWoken,
irq_is_in());
assert(xQueue != NULL);
_queue_t* queue = (_queue_t*)xQueue;
while (1) {
vTaskEnterCritical(0);
/* if there is at least one item in the queue */
if (queue->item_level > 0) {
/* if the item has no 0 size, copy it from queue to buffer */
if (queue->item_size && queue->item_num && queue->queue && pvBuffer) {
memcpy(pvBuffer,
queue->queue + queue->item_front * queue->item_size,
queue->item_size);
}
/* when only peeking leave the element in queue */
if (xJustPeeking == pdTRUE) {
DEBUG("%s pid=%d queue=%p return pdPASS\n", __func__,
thread_getpid(), xQueue);
vTaskExitCritical(0);
return pdPASS;
}
/* remove element from queue */
queue->item_front = (queue->item_front + 1) % queue->item_num;
queue->item_level--;
/* return if there is no waiting sending thread */
if (queue->sending.next == NULL) {
DEBUG("%s pid=%d queue=%p return pdPASS\n", __func__,
thread_getpid(), xQueue);
vTaskExitCritical(0);
return pdPASS;
}
/* otherwise unlock the waiting sending thread */
list_node_t *next = list_remove_head(&queue->sending);
thread_t *proc = container_of((clist_node_t*)next, thread_t, rq_entry);
sched_set_status(proc, STATUS_PENDING);
/* test whether context switch is required */
bool ctx_switch = proc->priority < thread_get_priority(thread_get_active());
DEBUG("%s pid=%d queue=%p unlock waiting pid=%d switch=%d\n",
__func__, thread_getpid(), xQueue, proc->pid, ctx_switch);
if (ctx_switch && pxHigherPriorityTaskWoken) {
*pxHigherPriorityTaskWoken = pdTRUE;
vTaskExitCritical(0);
}
else if (ctx_switch) {
vTaskExitCritical(0);
/* sets only the sched_context_switch_request in ISRs */
sched_switch(proc->priority);
}
else {
vTaskExitCritical(0);
}
DEBUG("%s pid=%d queue=%p return pdPASS\n", __func__,
thread_getpid(), xQueue);
/* in all cases vTaskExitCritical has been called already */
return pdPASS;
}
else if (xTicksToWait == 0 || irq_is_in()) {
/* if there was no item in the queue and timeout is 0, return with error */
DEBUG("%s pid=%d queue=%p return errQUEUE_EMPTY\n", __func__,
thread_getpid(), xQueue);
vTaskExitCritical(0);
return errQUEUE_EMPTY;
}
else {
/* suspend the calling thread to wait for an item in the queue */
thread_t *me = thread_get_active();
sched_set_status(me, STATUS_MUTEX_BLOCKED);
/* waiting list is sorted by priority */
thread_add_to_list(&queue->receiving, me);
DEBUG("%s pid=%d queue=%p suspended calling thread\n", __func__,
thread_getpid(), xQueue);
#if IS_USED(MODULE_ZTIMER_MSEC)
_queue_waiting_thread_t wdt = { .queue = &queue->receiving,
.thread = me,
.timeout = false };
ztimer_t tm = { .callback = _queue_timeout,
.arg = &wdt };
if (xTicksToWait < portMAX_DELAY) {
ztimer_set(ZTIMER_MSEC, &tm, xTicksToWait * portTICK_PERIOD_MS);
}
#else
assert((xTicksToWait == 0) || (xTicksToWait == portMAX_DELAY));
#endif
vTaskExitCritical(0);
thread_yield_higher();
#if IS_USED(MODULE_ZTIMER_MSEC)
vTaskEnterCritical(0);
if (xTicksToWait < portMAX_DELAY) {
ztimer_remove(ZTIMER_MSEC, &tm);
if (wdt.timeout) {
vTaskExitCritical(0);
return errQUEUE_FULL;
}
}
vTaskExitCritical(0);
#endif
DEBUG("%s pid=%d queue=%p continue calling thread\n", __func__,
thread_getpid(), xQueue);
}
/* in all cases vTaskExitCritical has been called already */
}
}
BaseType_t IRAM_ATTR xQueueGenericSend( QueueHandle_t xQueue,
const void * const pvItemToQueue,
TickType_t xTicksToWait,
const BaseType_t xCopyPosition )
{
DEBUG("%s pid=%d prio=%d queue=%p wait=%"PRIu32" pos=%d\n", __func__,
thread_getpid(), thread_get_priority(thread_get_active()),
xQueue, xTicksToWait, xCopyPosition);
return _queue_generic_send(xQueue, pvItemToQueue, xCopyPosition,
xTicksToWait, NULL);
}
BaseType_t IRAM_ATTR xQueueGenericSendFromISR( QueueHandle_t xQueue,
const void * const pvItemToQueue,
BaseType_t * const pxHigherPriorityTaskWoken,
const BaseType_t xCopyPosition )
{
DEBUG("%s pid=%d prio=%d queue=%p pos=%d woken=%p\n", __func__,
thread_getpid(), thread_get_priority(thread_get_active()),
xQueue, xCopyPosition, pxHigherPriorityTaskWoken);
return _queue_generic_send(xQueue, pvItemToQueue, xCopyPosition,
0, pxHigherPriorityTaskWoken);
}
BaseType_t IRAM_ATTR xQueueGenericReceive (QueueHandle_t xQueue,
void * const pvBuffer,
TickType_t xTicksToWait,
const BaseType_t xJustPeeking)
{
DEBUG("%s pid=%d prio=%d queue=%p wait=%"PRIu32" peek=%d\n", __func__,
thread_getpid(), thread_get_priority(thread_get_active()),
xQueue, xTicksToWait, xJustPeeking);
return _queue_generic_recv(xQueue, pvBuffer, xTicksToWait,
xJustPeeking, NULL);
}
BaseType_t IRAM_ATTR xQueueReceiveFromISR (QueueHandle_t xQueue,
void * const pvBuffer,
BaseType_t * const pxHigherPriorityTaskWoken)
{
DEBUG("%s pid=%d prio=%d queue=%p woken=%p\n", __func__,
thread_getpid(), thread_get_priority(thread_get_active()),
xQueue, pxHigherPriorityTaskWoken);
return _queue_generic_recv(xQueue, pvBuffer, 0,
0, pxHigherPriorityTaskWoken);
}
UBaseType_t uxQueueMessagesWaiting( QueueHandle_t xQueue )
{
assert(xQueue != NULL);
_queue_t* queue = (_queue_t*)xQueue;
return queue->item_level;
}
BaseType_t xQueueGiveFromISR (QueueHandle_t xQueue,
BaseType_t * const pxHigherPriorityTaskWoken)
{
DEBUG("%s pid=%d prio=%d queue=%p woken=%p\n", __func__,
thread_getpid(), thread_get_priority(thread_get_active()),
xQueue, pxHigherPriorityTaskWoken);
return _queue_generic_send(xQueue, NULL, queueSEND_TO_BACK,
0, pxHigherPriorityTaskWoken);
}
#endif /* DOXYGEN */