1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/atxmega/periph/uart.c
Gerson Fernando Budke 783afbc666 cpu/avr8_common: Add AVR8_ISR macro
The current ISR implementation for AVR8 requires use of
avr8_[enter/exit]_isr pair which add some boilerplate on code.
This add AVR8_ISR which clean-up the code and make it simpler
and hides any schedule detail from the user perspective.

This is a preparation for future scheduling and irq optimizations.

Signed-off-by: Gerson Fernando Budke <nandojve@gmail.com>
2023-07-05 20:00:19 +02:00

383 lines
10 KiB
C

/*
* Copyright (C) 2021-2023 Gerson Fernando Budke <nandojve@gmail.com>
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_atxmega
* @ingroup cpu_atxmega_periph
* @{
*
* @file
* @brief Low-level UART driver implementation
*
* @author Gerson Fernando Budke <nandojve@gmail.com>
*
*
* Supports runtime calculation of the BSEL and BSCALE register values.
* Supports reconfiguring UART after a clock change.
*
* @}
*/
#include <avr/io.h>
#include <stdlib.h>
#include <stdio.h>
#include "board.h"
#include "cpu.h"
#include "cpu_pm.h"
#include "irq.h"
#include "periph/gpio.h"
#include "periph/uart.h"
#include "sched.h"
#include "thread.h"
#define ENABLE_DEBUG 0
#include "debug.h"
/**
* @brief UART Baudrate Tolerance
*
* The tolerance is expressed as baud rate percentage multiplied by 100.
* For bigger tolerances UART double frequency can be avoided, thus saving
* power.
*
* The default baud tolerance is 2%.
*/
#ifndef BAUD_TOL
#define BAUD_TOL 2 * 100
#endif
/**
* @brief Allocate memory to store the callback functions.
*/
static uart_isr_ctx_t isr_ctx[UART_NUMOF];
/**
* @brief Get the pointer to the base register of the given USART device
*
* @param[in] dev USART device identifier
*
* @return base register address
*/
static inline USART_t *dev(uart_t dev)
{
return uart_config[dev].dev;
}
static inline int8_t _check_bsel(uint32_t baud, uint32_t calcbaud,
int16_t *precision)
{
/* Avoid negative values and with precision of two positions
* after the decimal point for the deviation in percent
*
* result is the absolute deviation eg. 10 001
*
* MAX BAUD fper/2 = 16MHz a shift of 8 can be used to increase
* accuracy
*/
uint16_t pre;
if (baud < calcbaud) {
pre = (uint16_t)((calcbaud * 10000ULL) / baud);
}
else {
pre = (uint16_t)((baud * 10000ULL) / calcbaud);
}
if (pre < ((uint16_t)*precision)) {
*precision = pre;
return 1;
}
return 0;
}
static inline int16_t _xmega_bsel_bscale(uint32_t *fper, uint32_t *baud,
uint8_t clk2x, uint16_t *bsel,
int8_t *bscale)
{
uint32_t calcbaud = 0;
uint32_t deno = 0;
int16_t precision = UINT_MAX;
uint16_t loc_bsel = 0;
int8_t loc_bscale;
/* Some explanation for equation transformation
* bsel = ( (fper / (2^bscale*16*baud) ) - 1 )
* = ( (fper / (2^bscale*(16-8*clk2x)*baud) ) - 1 )
* = ( fper - (2^bscale*(16-8*clk2x)*baud) )
* / (2^bscale*(16-8*clk2x)*baud)
*
* deno = ( baud * (16-8*clk2x) * 2^bscale )
* = ( baud * (1<<(4-clk2x)) * (1<<bscale) )
* = ( baud<<( 4-clk2x +bscale));
*
* some rounding math explanation for unsigned integer
* ABS(x +0,5) = (x*10+ 5 )/(10)
* Equation above is as follows, using denominator as base to round
* bsel = ( x - y )/y
* = ( x - y +0,5*y )/y
* = ( 2*x - y )/(2*y)
* = ((x<<1)- y )/(y<<1)
*
* baud = (fper*1/2^bscale) / ((bsel+1)*16)
*/
for (loc_bscale = 0; loc_bscale <= 7; loc_bscale++) {
int32_t sub = 0;
deno = (*baud << (4 - clk2x + loc_bscale));
sub = (*fper << 1) - (deno);
if (sub <= 0) {
break;
}
loc_bsel = (sub / (deno << 1));
if (loc_bsel >= 4095) {
continue;
}
/* Omit division by 16 get higher accuracy at small baudrates*/
calcbaud = (*fper >> loc_bscale) / ((loc_bsel + 1) << (4 - clk2x));
if (_check_bsel(*baud, calcbaud, &precision)) {
*bsel = loc_bsel;
*bscale = loc_bscale;
}
}
/* More math for the negative equation
* bscale is negative so 1/2^bscale = 2^|bscale| which is a factor and
* not a division again runding the result before division with
* 0.5 * denominator
*
* bsel = 1/2^bscale *( fcpu / ( (16*baud)-1) )
* = ( fcpu*2^|bscale| - (16*baud)*2^|bscale| )/(16*baud)
* = ( fcpu*2^|bscale| - (16*baud)*2^|bscale| + 0.5*(16*baud) )/(16*baud)
*
* deno = (16/2*baud) = (baud<<(3-clk2x))
*
* bsel = ( (fcpu - (deno<<(1))<<|bscale|) + deno )/(deno<<1)
*
* Baud = (fper*1/2^bscale)/ (16*(bsel+1/2^bscale))
*/
for (loc_bscale = -1; loc_bscale >= -7; loc_bscale--) {
uint32_t num = 0;
deno = (*baud << (3 - clk2x));
num = ((*fper - (deno << 1)) << (-loc_bscale)) + deno;
num = (num / (deno << 1));
if (num >= 4095) {
break;
}
loc_bsel = (uint16_t)(num & 0xFFF);
/* Omit division by 16 get higher accuracy at small baudrates */
calcbaud = (*fper << (-loc_bscale))
/ ((loc_bsel + (1 << (-loc_bscale))) << (4 - clk2x));
if (_check_bsel(*baud, calcbaud, &precision)) {
*bsel = loc_bsel;
*bscale = loc_bscale;
}
}
return precision;
}
/**
* @brief Calculates bsel and bscale for a given periphery clock and baudrate.
* Limitation are the periphery clock maximum is 32MHz, unsigned int
* overflows if clock is bigger. And the periphery clock has to be not
* smaller then 1 when divided by 128.
*
* fper/128 !=0 must be divide able by 128
* fper*128 != uint23_max => 32MHz max fper
*/
static inline int16_t _xmega_calculate_bsel_bscale(uint32_t fcpu, uint32_t baud,
uint8_t *clk2x,
uint16_t *bsel,
int8_t *bscale)
{
int16_t precision = 0;
precision = _xmega_bsel_bscale(&fcpu, &baud, 0, bsel, bscale );
/* default 2% precision, required precision is at least 2% */
if (precision <= (10000 + BAUD_TOL)) {
return (precision - 10000);
}
/* Precision goal was not met calculate baudrate with uart frequency doubled */
precision = _xmega_bsel_bscale(&fcpu, &baud, 1, bsel, bscale );
*clk2x = 1;
return (precision - 10000);
}
static inline void _configure_pins(uart_t uart)
{
/* configure RX pin */
if (gpio_is_valid(uart_config[uart].rx_pin)) {
gpio_init(uart_config[uart].rx_pin, GPIO_IN);
}
/* configure TX pin */
if (gpio_is_valid(uart_config[uart].tx_pin)) {
gpio_set(uart_config[uart].tx_pin);
gpio_init(uart_config[uart].tx_pin, GPIO_OUT);
}
#ifdef MODULE_PERIPH_UART_HW_FC
/* TODO */
#endif
}
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
{
int8_t bscale;
uint8_t clk2x;
uint16_t bsel;
/* make sure the given device is valid */
if (uart >= UART_NUMOF) {
return UART_NODEV;
}
uint16_t count = UINT16_MAX;
while (avr8_is_uart_tx_pending() && count--) {}
/* register interrupt context */
isr_ctx[uart].rx_cb = rx_cb;
isr_ctx[uart].arg = arg;
pm_periph_enable(uart_config[uart].pwr);
/* disable and reset UART */
dev(uart)->CTRLA = 0;
dev(uart)->CTRLB = 0;
dev(uart)->CTRLC = 0;
_configure_pins(uart);
/* configure UART to 8N1 mode */
dev(uart)->CTRLC = USART_CMODE_ASYNCHRONOUS_gc
| USART_PMODE_DISABLED_gc
| USART_CHSIZE_8BIT_gc;
/* set clock divider */
_xmega_calculate_bsel_bscale(CLOCK_CORECLOCK, baudrate, &clk2x,
&bsel, &bscale);
dev(uart)->BAUDCTRLA = (uint8_t)(bsel & 0x00ff);
dev(uart)->BAUDCTRLB = (bscale << USART_BSCALE_gp)
| ((uint8_t)((bsel & 0x0fff) >> 8));
if (clk2x == 1) {
dev(uart)->CTRLB |= USART_CLK2X_bm;
}
/* enable RX and TX Interrupts and set level*/
if (rx_cb) {
dev(uart)->CTRLA = (uart_config[uart].rx_int_lvl << USART_RXCINTLVL_gp)
| (uart_config[uart].tx_int_lvl << USART_TXCINTLVL_gp)
| (uart_config[uart].dre_int_lvl << USART_DREINTLVL_gp);
dev(uart)->CTRLB = USART_RXEN_bm | USART_TXEN_bm;
}
else {
/* only transmit */
dev(uart)->CTRLB = USART_TXEN_bm;
}
DEBUG("Set clk2x %" PRIu8 " bsel %" PRIu16 "bscale %" PRIi8 "\n",
clk2x, bsel, bscale);
return UART_OK;
}
void uart_write(uart_t uart, const uint8_t *data, size_t len)
{
for (size_t i = 0; i < len; i++) {
while (!(dev(uart)->STATUS & USART_DREIF_bm)) {}
/* start of TX won't finish until no data in DATAn and transmit shift
register is empty */
uint8_t irq_state = irq_disable();
avr8_uart_tx_set_pending(uart);
irq_restore(irq_state);
dev(uart)->DATA = data[i];
}
}
void uart_poweron(uart_t uart)
{
pm_periph_enable(uart_config[uart].pwr);
}
void uart_poweroff(uart_t uart)
{
pm_periph_disable(uart_config[uart].pwr);
}
static inline void _rx_isr_handler(int num)
{
if (isr_ctx[num].rx_cb) {
isr_ctx[num].rx_cb(isr_ctx[num].arg, dev(num)->DATA);
}
}
static inline void _tx_isr_handler(int num)
{
/* entire frame in the Transmit Shift Register has been shifted out and
there are no new data currently present in the transmit buffer */
avr8_uart_tx_clear_pending(num);
}
#ifdef UART_0_RXC_ISR
AVR8_ISR(UART_0_RXC_ISR, _rx_isr_handler, 0);
AVR8_ISR(UART_0_TXC_ISR, _tx_isr_handler, 0);
#endif /* UART_0_ISR */
#ifdef UART_1_RXC_ISR
AVR8_ISR(UART_1_RXC_ISR, _rx_isr_handler, 1);
AVR8_ISR(UART_1_TXC_ISR, _tx_isr_handler, 1);
#endif /* UART_1_ISR */
#ifdef UART_2_RXC_ISR
AVR8_ISR(UART_2_RXC_ISR, _rx_isr_handler, 2);
AVR8_ISR(UART_2_TXC_ISR, _tx_isr_handler, 2);
#endif /* UART_2_ISR */
#ifdef UART_3_RXC_ISR
AVR8_ISR(UART_3_RXC_ISR, _rx_isr_handler, 3);
AVR8_ISR(UART_3_TXC_ISR, _tx_isr_handler, 3);
#endif /* UART_3_ISR */
#ifdef UART_4_RXC_ISR
AVR8_ISR(UART_4_RXC_ISR, _rx_isr_handler, 4);
AVR8_ISR(UART_4_TXC_ISR, _tx_isr_handler, 4);
#endif /* UART_4_ISR */
#ifdef UART_5_RXC_ISR
AVR8_ISR(UART_5_RXC_ISR, _rx_isr_handler, 5);
AVR8_ISR(UART_5_TXC_ISR, _tx_isr_handler, 5);
#endif /* UART_5_ISR */
#ifdef UART_6_RXC_ISR
AVR8_ISR(UART_6_RXC_ISR, _rx_isr_handler, 6);
AVR8_ISR(UART_6_TXC_ISR, _tx_isr_handler, 6);
#endif /* UART_6_ISR */
#ifdef UART_7_RXC_ISR
AVR8_ISR(UART_7_RXC_ISR, _rx_isr_handler, 7);
AVR8_ISR(UART_7_TXC_ISR, _tx_isr_handler, 7);
#endif /* UART_7_ISR */