1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/sam0_common/periph/rtc.c
Benjamin Valentin 9aa8c619c1 sam0_common: make RTC implementation common across all sam0 MCUs
The currently supported SAM0 MCUs (samd21, saml21, saml1x) share the
same RTC peripheral, yet each of them carries it's own copy of the RTC
driver.

Unify the drivers and move them to sam0_common.
2019-04-15 22:25:47 +02:00

287 lines
8.4 KiB
C

/*
* Copyright (C) 2014 Baptiste CLENET
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_sam0_common
* @ingroup drivers_periph_rtc
* @{
*
* @file
* @brief Low-level RTC driver implementation
*
* @author Baptiste Clenet <bapclenet@gmail.com>
* @autor ported to SAML21 by FWX <FWX@dialine.fr>
* @}
*/
#include <time.h>
#include "cpu.h"
#include "periph/rtc.h"
#include "periph_conf.h"
/* SAML21 rev B needs an extra bit, which in rev A defaults to 1, but isn't
* visible. Thus define it here. */
#ifndef RTC_MODE2_CTRLA_CLOCKSYNC
#define RTC_MODE2_CTRLA_CLOCKSYNC_Pos 15
#define RTC_MODE2_CTRLA_CLOCKSYNC (0x1ul << RTC_MODE2_CTRLA_CLOCKSYNC_Pos)
#endif
typedef struct {
rtc_alarm_cb_t cb; /**< callback called from RTC interrupt */
void *arg; /**< argument passed to the callback */
} rtc_state_t;
static rtc_state_t rtc_callback;
/* At 1Hz, RTC goes till 63 years (2^5, see 17.8.22 in datasheet)
* reference_year is set to 100 (offset) to be in our current time (2000)
* Thanks to this, the user will be able to set time in 2000's*/
static uint16_t reference_year = 100;
static void _wait_syncbusy(void)
{
#ifdef REG_RTC_MODE2_SYNCBUSY
while (RTC->MODE2.SYNCBUSY.reg) {}
#else
while (RTC->MODE2.STATUS.bit.SYNCBUSY) {}
#endif
}
static inline void _rtc_set_enabled(bool on)
{
#ifdef REG_RTC_MODE2_CTRLA
RTC->MODE2.CTRLA.bit.ENABLE = on;
#else
RTC->MODE2.CTRL.bit.ENABLE = on;
#endif
_wait_syncbusy();
}
#ifdef CPU_SAMD21
static void _rtc_clock_setup(void)
{
/* RTC uses External 32,768KHz Oscillator (OSC32K isn't accurate enough p1075/1138)*/
SYSCTRL->XOSC32K.reg = SYSCTRL_XOSC32K_ONDEMAND |
SYSCTRL_XOSC32K_EN32K |
SYSCTRL_XOSC32K_XTALEN |
SYSCTRL_XOSC32K_STARTUP(6) |
SYSCTRL_XOSC32K_ENABLE;
/* Setup clock GCLK2 with OSC32K divided by 32 */
GCLK->GENDIV.reg = GCLK_GENDIV_ID(2)|GCLK_GENDIV_DIV(4);
GCLK->GENCTRL.reg = (GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_XOSC32K | GCLK_GENCTRL_ID(2) | GCLK_GENCTRL_DIVSEL );
GCLK->CLKCTRL.reg = (uint32_t)((GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK2 | (RTC_GCLK_ID << GCLK_CLKCTRL_ID_Pos)));
while (GCLK->STATUS.bit.SYNCBUSY) {}
}
#else
static void _rtc_clock_setup(void)
{
MCLK->APBAMASK.reg |= MCLK_APBAMASK_OSC32KCTRL;
#if EXTERNAL_OSC32_SOURCE
/* RTC uses External 32,768KHz Oscillator */
OSC32KCTRL->XOSC32K.reg = OSC32KCTRL_XOSC32K_XTALEN
| OSC32KCTRL_XOSC32K_EN1K
| OSC32KCTRL_XOSC32K_RUNSTDBY
| OSC32KCTRL_XOSC32K_ENABLE;
/* Wait XOSC32K Ready */
while (OSC32KCTRL->STATUS.bit.XOSC32KRDY==0) {}
/* RTC source clock is external oscillator at 1kHz */
OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_XOSC1K;
#endif /* EXTERNAL_OSC32_SOURCE */
#if INTERNAL_OSC32_SOURCE
uint32_t * pCalibrationArea;
uint32_t osc32kcal;
/* Read OSC32KCAL, calibration data for OSC32 !!! */
pCalibrationArea = (uint32_t*) NVMCTRL_OTP5;
osc32kcal = ( (*pCalibrationArea) & 0x1FC0 ) >> 6;
/* RTC use Low Power Internal Oscillator at 1kHz */
OSC32KCTRL->OSC32K.reg = OSC32KCTRL_OSC32K_RUNSTDBY
| OSC32KCTRL_OSC32K_EN1K
| OSC32KCTRL_OSC32K_CALIB(osc32kcal)
| OSC32KCTRL_OSC32K_ENABLE;
/* Wait OSC32K Ready */
while (OSC32KCTRL->STATUS.bit.OSC32KRDY==0) {}
/* RTC uses internal 32,768KHz Oscillator */
OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_OSC1K;
#endif /* INTERNAL_OSC32_SOURCE */
#if ULTRA_LOW_POWER_INTERNAL_OSC_SOURCE
/* RTC uses Ultra Low Power internal 32,768KHz Oscillator */
OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_ULP1K;
#endif /* ULTRA_LOW_POWER_INTERNAL_OSC_SOURCE */
}
#endif /* CPU_SAMD21 - Clock Setup */
void rtc_init(void)
{
_rtc_clock_setup();
rtc_poweron();
_rtc_set_enabled(0);
/* RTC config with RTC_MODE2_CTRL_CLKREP = 0 (24h) */
#ifdef REG_RTC_MODE2_CTRLA
RTC->MODE2.CTRLA.reg = RTC_MODE2_CTRLA_PRESCALER_DIV1024 /* CLK_RTC_CNT = 1KHz / 1024 -> 1Hz */
| RTC_MODE2_CTRLA_CLOCKSYNC /* Clock Read Synchronization Enable */
| RTC_MODE2_CTRLA_MODE_CLOCK;
#else
RTC->MODE2.CTRL.reg = RTC_MODE2_CTRL_PRESCALER_DIV1024
| RTC_MODE2_CTRL_MODE_CLOCK;
#endif
RTC->MODE2.INTENSET.reg = RTC_MODE2_INTENSET_OVF;
/* Clear interrupt flags */
RTC->MODE2.INTFLAG.reg |= RTC_MODE2_INTFLAG_OVF;
RTC->MODE2.INTFLAG.reg |= RTC_MODE2_INTFLAG_ALARM0;
_rtc_set_enabled(1);
}
int rtc_set_time(struct tm *time)
{
if ((time->tm_year < reference_year) || (time->tm_year > reference_year + 63)) {
return -1;
}
else {
RTC->MODE2.CLOCK.reg = RTC_MODE2_CLOCK_YEAR(time->tm_year - reference_year)
| RTC_MODE2_CLOCK_MONTH(time->tm_mon + 1)
| RTC_MODE2_CLOCK_DAY(time->tm_mday)
| RTC_MODE2_CLOCK_HOUR(time->tm_hour)
| RTC_MODE2_CLOCK_MINUTE(time->tm_min)
| RTC_MODE2_CLOCK_SECOND(time->tm_sec);
}
_wait_syncbusy();
return 0;
}
int rtc_get_time(struct tm *time)
{
RTC_MODE2_CLOCK_Type clock;
/* Read register in one time */
clock.reg = RTC->MODE2.CLOCK.reg;
time->tm_year = clock.bit.YEAR + reference_year;
if ((time->tm_year < reference_year) || (time->tm_year > (reference_year + 63))) {
return -1;
}
time->tm_mon = clock.bit.MONTH - 1;
time->tm_mday = clock.bit.DAY;
time->tm_hour = clock.bit.HOUR;
time->tm_min = clock.bit.MINUTE;
time->tm_sec = clock.bit.SECOND;
return 0;
}
int rtc_set_alarm(struct tm *time, rtc_alarm_cb_t cb, void *arg)
{
rtc_clear_alarm();
if ((time->tm_year < reference_year) || (time->tm_year > (reference_year + 63))) {
return -2;
}
else {
RTC->MODE2.Mode2Alarm[0].ALARM.reg = RTC_MODE2_ALARM_YEAR(time->tm_year - reference_year)
| RTC_MODE2_ALARM_MONTH(time->tm_mon + 1)
| RTC_MODE2_ALARM_DAY(time->tm_mday)
| RTC_MODE2_ALARM_HOUR(time->tm_hour)
| RTC_MODE2_ALARM_MINUTE(time->tm_min)
| RTC_MODE2_ALARM_SECOND(time->tm_sec);
RTC->MODE2.Mode2Alarm[0].MASK.reg = RTC_MODE2_MASK_SEL(6);
}
_wait_syncbusy();
/* Setup interrupt */
NVIC_EnableIRQ(RTC_IRQn);
/* Enable IRQ */
rtc_callback.cb = cb;
rtc_callback.arg = arg;
RTC->MODE2.INTFLAG.reg |= RTC_MODE2_INTFLAG_ALARM0;
RTC->MODE2.INTENSET.bit.ALARM0 = 1;
return 0;
}
int rtc_get_alarm(struct tm *time)
{
RTC_MODE2_ALARM_Type alarm;
/* Read alarm register in one time */
alarm.reg = RTC->MODE2.Mode2Alarm[0].ALARM.reg;
time->tm_year = alarm.bit.YEAR + reference_year;
if ((time->tm_year < reference_year) || (time->tm_year > (reference_year + 63))) {
return -1;
}
time->tm_mon = alarm.bit.MONTH - 1;
time->tm_mday = alarm.bit.DAY;
time->tm_hour = alarm.bit.HOUR;
time->tm_min = alarm.bit.MINUTE;
time->tm_sec = alarm.bit.SECOND;
return 0;
}
void rtc_clear_alarm(void)
{
/* disable interrupt */
RTC->MODE2.INTENCLR.bit.ALARM0 = 1;
rtc_callback.cb = NULL;
rtc_callback.arg = NULL;
}
void rtc_poweron(void)
{
#ifdef MCLK
MCLK->APBAMASK.reg |= MCLK_APBAMASK_RTC;
#else
PM->APBAMASK.reg |= PM_APBAMASK_RTC;
#endif
}
void rtc_poweroff(void)
{
#ifdef MCLK
MCLK->APBAMASK.reg &= ~MCLK_APBAMASK_RTC;
#else
PM->APBAMASK.reg &= ~PM_APBAMASK_RTC;
#endif
}
void isr_rtc(void)
{
if (RTC->MODE2.INTFLAG.bit.ALARM0) {
rtc_callback.cb(rtc_callback.arg);
/* clear flag */
RTC->MODE2.INTFLAG.reg |= RTC_MODE2_INTFLAG_ALARM0;
}
if (RTC->MODE2.INTFLAG.bit.OVF) {
/* clear flag */
RTC->MODE2.INTFLAG.reg |= RTC_MODE2_INTFLAG_OVF;
/* At 1Hz, RTC goes till 63 years (2^5, see 17.8.22 in datasheet)
* Start RTC again with reference_year 64 years more (Be careful with alarm set) */
reference_year += 64;
}
cortexm_isr_end();
}