mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2025-01-17 06:52:44 +01:00
292 lines
7.3 KiB
C
292 lines
7.3 KiB
C
/*
|
|
* Copyright (C) 2014-2017 Freie Universität Berlin
|
|
* Copyright (C) 2016 OTA keys
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU Lesser
|
|
* General Public License v2.1. See the file LICENSE in the top level
|
|
* directory for more details.
|
|
*/
|
|
|
|
/**
|
|
* @ingroup cpu_stm32_common
|
|
* @ingroup drivers_periph_uart
|
|
* @{
|
|
*
|
|
* @file
|
|
* @brief Low-level UART driver implementation
|
|
*
|
|
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
|
|
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
|
|
* @author Fabian Nack <nack@inf.fu-berlin.de>
|
|
* @author Hermann Lelong <hermann@otakeys.com>
|
|
* @author Toon Stegen <toon.stegen@altran.com>
|
|
*
|
|
* @}
|
|
*/
|
|
|
|
#include "cpu.h"
|
|
#include "sched.h"
|
|
#include "thread.h"
|
|
#include "assert.h"
|
|
#include "periph/uart.h"
|
|
#include "periph/gpio.h"
|
|
#include "pm_layered.h"
|
|
|
|
#define RXENABLE (USART_CR1_RE | USART_CR1_RXNEIE)
|
|
|
|
/**
|
|
* @brief Allocate memory to store the callback functions
|
|
*/
|
|
static uart_isr_ctx_t isr_ctx[UART_NUMOF];
|
|
|
|
static inline USART_TypeDef *dev(uart_t uart)
|
|
{
|
|
return uart_config[uart].dev;
|
|
}
|
|
|
|
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
|
|
{
|
|
uint16_t mantissa;
|
|
uint8_t fraction;
|
|
uint32_t clk;
|
|
|
|
assert(uart < UART_NUMOF);
|
|
|
|
/* save ISR context */
|
|
isr_ctx[uart].rx_cb = rx_cb;
|
|
isr_ctx[uart].arg = arg;
|
|
|
|
/* configure TX pin */
|
|
gpio_init(uart_config[uart].tx_pin, GPIO_OUT);
|
|
/* set TX pin high to avoid garbage during further initialization */
|
|
gpio_set(uart_config[uart].tx_pin);
|
|
#ifdef CPU_FAM_STM32F1
|
|
gpio_init_af(uart_config[uart].tx_pin, GPIO_AF_OUT_PP);
|
|
#else
|
|
gpio_init_af(uart_config[uart].tx_pin, uart_config[uart].tx_af);
|
|
#endif
|
|
/* configure RX pin */
|
|
if (rx_cb) {
|
|
gpio_init(uart_config[uart].rx_pin, GPIO_IN);
|
|
#ifndef CPU_FAM_STM32F1
|
|
gpio_init_af(uart_config[uart].rx_pin, uart_config[uart].rx_af);
|
|
#endif
|
|
}
|
|
#ifdef MODULE_STM32_PERIPH_UART_HW_FC
|
|
if (uart_config[uart].cts_pin != GPIO_UNDEF) {
|
|
gpio_init(uart_config[uart].cts_pin, GPIO_IN);
|
|
gpio_init(uart_config[uart].rts_pin, GPIO_OUT);
|
|
#ifdef CPU_FAM_STM32F1
|
|
gpio_init_af(uart_config[uart].rts_pin, GPIO_AF_OUT_PP);
|
|
#else
|
|
gpio_init_af(uart_config[uart].cts_pin, uart_config[uart].cts_af);
|
|
gpio_init_af(uart_config[uart].rts_pin, uart_config[uart].rts_af);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/* enable the clock */
|
|
uart_poweron(uart);
|
|
|
|
/* reset UART configuration -> defaults to 8N1 mode */
|
|
dev(uart)->CR1 = 0;
|
|
dev(uart)->CR2 = 0;
|
|
dev(uart)->CR3 = 0;
|
|
|
|
/* calculate and apply baudrate */
|
|
clk = periph_apb_clk(uart_config[uart].bus) / baudrate;
|
|
mantissa = (uint16_t)(clk / 16);
|
|
fraction = (uint8_t)(clk - (mantissa * 16));
|
|
dev(uart)->BRR = ((mantissa & 0x0fff) << 4) | (fraction & 0x0f);
|
|
|
|
/* enable RX interrupt if applicable */
|
|
if (rx_cb) {
|
|
NVIC_EnableIRQ(uart_config[uart].irqn);
|
|
dev(uart)->CR1 = (USART_CR1_UE | USART_CR1_TE | RXENABLE);
|
|
}
|
|
else {
|
|
dev(uart)->CR1 = (USART_CR1_UE | USART_CR1_TE);
|
|
}
|
|
|
|
#ifdef MODULE_STM32_PERIPH_UART_HW_FC
|
|
if (uart_config[uart].cts_pin != GPIO_UNDEF) {
|
|
/* configure hardware flow control */
|
|
dev(uart)->CR3 = (USART_CR3_RTSE | USART_CR3_CTSE);
|
|
}
|
|
#endif
|
|
|
|
return UART_OK;
|
|
}
|
|
|
|
static inline void send_byte(uart_t uart, uint8_t byte)
|
|
{
|
|
#if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32L0) \
|
|
|| defined(CPU_FAM_STM32F3) || defined(CPU_FAM_STM32L4) \
|
|
|| defined(CPU_FAM_STM32F7)
|
|
while (!(dev(uart)->ISR & USART_ISR_TXE)) {}
|
|
dev(uart)->TDR = byte;
|
|
#else
|
|
while (!(dev(uart)->SR & USART_SR_TXE)) {}
|
|
dev(uart)->DR = byte;
|
|
#endif
|
|
}
|
|
|
|
static inline void wait_for_tx_complete(uart_t uart)
|
|
{
|
|
#if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32L0) \
|
|
|| defined(CPU_FAM_STM32F3) || defined(CPU_FAM_STM32L4) \
|
|
|| defined(CPU_FAM_STM32F7)
|
|
while (!(dev(uart)->ISR & USART_ISR_TC)) {}
|
|
#else
|
|
while (!(dev(uart)->SR & USART_SR_TC)) {}
|
|
#endif
|
|
}
|
|
|
|
void uart_write(uart_t uart, const uint8_t *data, size_t len)
|
|
{
|
|
assert(uart < UART_NUMOF);
|
|
|
|
#ifdef MODULE_PERIPH_DMA
|
|
if (!len) {
|
|
return;
|
|
}
|
|
if (uart_config[uart].dma != DMA_STREAM_UNDEF) {
|
|
if (irq_is_in()) {
|
|
uint16_t todo = 0;
|
|
if (dev(uart)->CR3 & USART_CR3_DMAT) {
|
|
/* DMA transfer for UART on-going */
|
|
todo = dma_suspend(uart_config[uart].dma);
|
|
}
|
|
if (todo) {
|
|
dma_stop(uart_config[uart].dma);
|
|
dev(uart)->CR3 &= ~USART_CR3_DMAT;
|
|
}
|
|
for (unsigned i = 0; i < len; i++) {
|
|
send_byte(uart, data[i]);
|
|
}
|
|
if (todo > 0) {
|
|
wait_for_tx_complete(uart);
|
|
dev(uart)->CR3 |= USART_CR3_DMAT;
|
|
dma_resume(uart_config[uart].dma, todo);
|
|
}
|
|
}
|
|
else {
|
|
dma_acquire(uart_config[uart].dma);
|
|
dev(uart)->CR3 |= USART_CR3_DMAT;
|
|
dma_transfer(uart_config[uart].dma, uart_config[uart].dma_chan, data,
|
|
(void *)&dev(uart)->DR, len, DMA_MEM_TO_PERIPH, DMA_INC_SRC_ADDR);
|
|
dma_release(uart_config[uart].dma);
|
|
|
|
/* make sure the function is synchronous by waiting for the transfer to
|
|
* finish */
|
|
wait_for_tx_complete(uart);
|
|
dev(uart)->CR3 &= ~USART_CR3_DMAT;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
for (size_t i = 0; i < len; i++) {
|
|
send_byte(uart, data[i]);
|
|
}
|
|
/* make sure the function is synchronous by waiting for the transfer to
|
|
* finish */
|
|
wait_for_tx_complete(uart);
|
|
}
|
|
|
|
void uart_poweron(uart_t uart)
|
|
{
|
|
assert(uart < UART_NUMOF);
|
|
#ifdef STM32_PM_STOP
|
|
if (isr_ctx[uart].rx_cb) {
|
|
pm_block(STM32_PM_STOP);
|
|
}
|
|
#endif
|
|
periph_clk_en(uart_config[uart].bus, uart_config[uart].rcc_mask);
|
|
}
|
|
|
|
void uart_poweroff(uart_t uart)
|
|
{
|
|
assert(uart < UART_NUMOF);
|
|
|
|
periph_clk_dis(uart_config[uart].bus, uart_config[uart].rcc_mask);
|
|
#ifdef STM32_PM_STOP
|
|
if (isr_ctx[uart].rx_cb) {
|
|
pm_unblock(STM32_PM_STOP);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void irq_handler(uart_t uart)
|
|
{
|
|
#if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32L0) \
|
|
|| defined(CPU_FAM_STM32F3) || defined(CPU_FAM_STM32L4) \
|
|
|| defined(CPU_FAM_STM32F7)
|
|
|
|
uint32_t status = dev(uart)->ISR;
|
|
|
|
if (status & USART_ISR_RXNE) {
|
|
isr_ctx[uart].rx_cb(isr_ctx[uart].arg, (uint8_t)dev(uart)->RDR);
|
|
}
|
|
if (status & USART_ISR_ORE) {
|
|
dev(uart)->ICR |= USART_ICR_ORECF; /* simply clear flag on overrun */
|
|
}
|
|
|
|
#else
|
|
|
|
uint32_t status = dev(uart)->SR;
|
|
|
|
if (status & USART_SR_RXNE) {
|
|
isr_ctx[uart].rx_cb(isr_ctx[uart].arg, (uint8_t)dev(uart)->DR);
|
|
}
|
|
if (status & USART_SR_ORE) {
|
|
/* ORE is cleared by reading SR and DR sequentially */
|
|
dev(uart)->DR;
|
|
}
|
|
|
|
#endif
|
|
|
|
cortexm_isr_end();
|
|
}
|
|
|
|
#ifdef UART_0_ISR
|
|
void UART_0_ISR(void)
|
|
{
|
|
irq_handler(UART_DEV(0));
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_1_ISR
|
|
void UART_1_ISR(void)
|
|
{
|
|
irq_handler(UART_DEV(1));
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_2_ISR
|
|
void UART_2_ISR(void)
|
|
{
|
|
irq_handler(UART_DEV(2));
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_3_ISR
|
|
void UART_3_ISR(void)
|
|
{
|
|
irq_handler(UART_DEV(3));
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_4_ISR
|
|
void UART_4_ISR(void)
|
|
{
|
|
irq_handler(UART_DEV(4));
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_5_ISR
|
|
void UART_5_ISR(void)
|
|
{
|
|
irq_handler(UART_DEV(5));
|
|
}
|
|
#endif
|