mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2025-01-18 12:52:44 +01:00
35635e4039
On overrung the ORE bit in the ORECF register is set. An overrun error occurs when a character is received when RXNE has not been reset. Data can not be transferred from the shift register to the RDR register until the RXNE bit is cleared. The ORE bit is reset by setting the ORECF bit in the ICR register. In case the ORE bit isn't cleared, the isr_handler() routine is called continuously. Which prevents the system from normal scheduling.
222 lines
5.0 KiB
C
222 lines
5.0 KiB
C
/*
|
|
* Copyright (C) 2014 Freie Universität Berlin
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU Lesser General
|
|
* Public License v2.1. See the file LICENSE in the top level directory for more
|
|
* details.
|
|
*/
|
|
|
|
/**
|
|
* @ingroup cpu_stm32f3
|
|
* @{
|
|
*
|
|
* @file
|
|
* @brief Low-level UART driver implementation
|
|
*
|
|
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
|
|
*
|
|
* @}
|
|
*/
|
|
|
|
#include "cpu.h"
|
|
#include "sched.h"
|
|
#include "thread.h"
|
|
#include "periph/uart.h"
|
|
|
|
/**
|
|
* @brief Allocate memory to store the callback functions.
|
|
*/
|
|
static uart_isr_ctx_t uart_config[UART_NUMOF];
|
|
|
|
static int init_base(uart_t uart, uint32_t baudrate);
|
|
|
|
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
|
|
{
|
|
/* do basic initialization */
|
|
int res = init_base(uart, baudrate);
|
|
if (res < 0) {
|
|
return res;
|
|
}
|
|
|
|
/* remember callback addresses */
|
|
uart_config[uart].rx_cb = rx_cb;
|
|
uart_config[uart].arg = arg;
|
|
|
|
/* enable receive interrupt */
|
|
switch (uart) {
|
|
#if UART_0_EN
|
|
case UART_0:
|
|
NVIC_EnableIRQ(UART_0_IRQ_CHAN);
|
|
UART_0_DEV->CR1 |= USART_CR1_RXNEIE;
|
|
break;
|
|
#endif
|
|
#if UART_1_EN
|
|
case UART_1:
|
|
NVIC_EnableIRQ(UART_1_IRQ_CHAN);
|
|
UART_1_DEV->CR1 |= USART_CR1_RXNEIE;
|
|
break;
|
|
#endif
|
|
#if UART_2_EN
|
|
case UART_2:
|
|
NVIC_EnableIRQ(UART_2_IRQ_CHAN);
|
|
UART_2_DEV->CR1 |= USART_CR1_RXNEIE;
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_base(uart_t uart, uint32_t baudrate)
|
|
{
|
|
USART_TypeDef *dev = 0;
|
|
GPIO_TypeDef *port = 0;
|
|
uint32_t tx_pin = 0;
|
|
uint32_t rx_pin = 0;
|
|
uint8_t af = 0;
|
|
uint32_t clk = 0;
|
|
uint16_t mantissa;
|
|
uint8_t fraction;
|
|
|
|
switch (uart) {
|
|
#if UART_0_EN
|
|
case UART_0:
|
|
dev = UART_0_DEV;
|
|
port = UART_0_PORT;
|
|
clk = UART_0_CLK;
|
|
tx_pin = UART_0_TX_PIN;
|
|
rx_pin = UART_0_RX_PIN;
|
|
af = UART_0_AF;
|
|
UART_0_CLKEN();
|
|
UART_0_PORT_CLKEN();
|
|
break;
|
|
#endif
|
|
#if UART_1_EN
|
|
case UART_1:
|
|
dev = UART_1_DEV;
|
|
port = UART_1_PORT;
|
|
clk = UART_1_CLK;
|
|
tx_pin = UART_1_TX_PIN;
|
|
rx_pin = UART_1_RX_PIN;
|
|
af = UART_1_AF;
|
|
UART_1_CLKEN();
|
|
UART_1_PORT_CLKEN();
|
|
break;
|
|
#endif
|
|
#if UART_2_EN
|
|
case UART_2:
|
|
dev = UART_2_DEV;
|
|
port = UART_2_PORT;
|
|
clk = UART_2_CLK;
|
|
tx_pin = UART_2_TX_PIN;
|
|
rx_pin = UART_2_RX_PIN;
|
|
af = UART_2_AF;
|
|
UART_2_CLKEN();
|
|
UART_2_PORT_CLKEN();
|
|
break;
|
|
#endif
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
/* uart_configure RX and TX pins, set pin to use alternative function mode */
|
|
port->MODER &= ~(3 << (rx_pin * 2) | 3 << (tx_pin * 2));
|
|
port->MODER |= 2 << (rx_pin * 2) | 2 << (tx_pin * 2);
|
|
/* and assign alternative function */
|
|
if (rx_pin < 8) {
|
|
port->AFR[0] &= ~(0xf << (rx_pin * 4));
|
|
port->AFR[0] |= af << (rx_pin * 4);
|
|
}
|
|
else {
|
|
port->AFR[1] &= ~(0xf << ((rx_pin - 8) * 4));
|
|
port->AFR[1] |= af << ((rx_pin - 8) * 4);
|
|
}
|
|
if (tx_pin < 8) {
|
|
port->AFR[0] &= ~(0xf << (tx_pin * 4));
|
|
port->AFR[0] |= af << (tx_pin * 4);
|
|
}
|
|
else {
|
|
port->AFR[1] &= ~(0xf << ((tx_pin - 8) * 4));
|
|
port->AFR[1] |= af << ((tx_pin - 8) * 4);
|
|
}
|
|
|
|
/* uart_configure UART to mode 8N1 with given baudrate */
|
|
clk /= baudrate;
|
|
mantissa = (uint16_t)(clk / 16);
|
|
fraction = (uint8_t)(clk - (mantissa * 16));
|
|
dev->BRR = ((mantissa & 0x0fff) << 4) | (0x0f & fraction);
|
|
|
|
/* enable receive and transmit mode */
|
|
dev->CR3 = 0;
|
|
dev->CR2 = 0;
|
|
dev->CR1 |= USART_CR1_UE | USART_CR1_TE | USART_CR1_RE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void uart_write(uart_t uart, const uint8_t *data, size_t len)
|
|
{
|
|
USART_TypeDef *dev = 0;
|
|
|
|
switch (uart) {
|
|
#if UART_0_EN
|
|
case UART_0:
|
|
dev = UART_0_DEV;
|
|
break;
|
|
#endif
|
|
#if UART_1_EN
|
|
case UART_1:
|
|
dev = UART_1_DEV;
|
|
break;
|
|
#endif
|
|
#if UART_2_EN
|
|
case UART_2:
|
|
dev = UART_2_DEV;
|
|
break;
|
|
#endif
|
|
default:
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < len; i++) {
|
|
while (!(dev->ISR & USART_ISR_TXE));
|
|
dev->TDR = data[i];
|
|
}
|
|
}
|
|
|
|
static inline void irq_handler(uint8_t uartnum, USART_TypeDef *dev)
|
|
{
|
|
if (dev->ISR & USART_ISR_RXNE) {
|
|
char data = (char)dev->RDR;
|
|
uart_config[uartnum].rx_cb(uart_config[uartnum].arg, data);
|
|
}
|
|
else if (dev->ISR & USART_ISR_ORE) {
|
|
/* do nothing on overrun */
|
|
dev->ICR |= USART_ICR_ORECF;
|
|
}
|
|
if (sched_context_switch_request) {
|
|
thread_yield();
|
|
}
|
|
}
|
|
|
|
#if UART_0_EN
|
|
void UART_0_ISR(void)
|
|
{
|
|
irq_handler(UART_0, UART_0_DEV);
|
|
}
|
|
#endif
|
|
|
|
#if UART_1_EN
|
|
void UART_1_ISR(void)
|
|
{
|
|
irq_handler(UART_1, UART_1_DEV);
|
|
}
|
|
#endif
|
|
|
|
#if UART_2_EN
|
|
void UART_2_ISR(void)
|
|
{
|
|
irq_handler(UART_2, UART_2_DEV);
|
|
}
|
|
#endif
|