1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/drivers/ccs811/ccs811.c
Alexandre Abadie 8a7edeb193 drivers/ccs811: fix build issues on ARM (#1)
* drivers/ccs811: fix types in debug messages

* drivers/driver_ccs811_full: fix unused variable build error
2018-12-20 12:42:44 +01:00

685 lines
20 KiB
C

/*
* Copyright (C) 2018 Gunar Schorcht
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup drivers_ccs811
* @brief Device Driver for AMS CCS811 digital gas sensor
* @author Gunar Schorcht <gunar@schorcht.net>
* @file
*/
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include "log.h"
#include "xtimer.h"
#include "ccs811_regs.h"
#include "ccs811.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
/**
* Internal macro definitions
*/
#define ASSERT_PARAM(cond) \
if (!(cond)) { \
DEBUG("[ccs811] %s: %s\n", \
__func__, "parameter condition (" # cond ") not fulfilled"); \
assert(cond); \
}
#define DEBUG_DEV(f, d, ...) \
DEBUG("[ccs811] %s dev=%d addr=%02x: " f "\n", \
__func__, d->params.i2c_dev, d->params.i2c_addr, ## __VA_ARGS__)
#define ERROR_DEV(f, d, ...) \
LOG_ERROR("[ccs811] dev=%d addr=%x: " f "\n", \
d->params.i2c_dev, d->params.i2c_addr, ## __VA_ARGS__)
/**
* Internal type declarations
*/
typedef struct {
uint8_t reserved_1 : 2;
uint8_t int_thresh : 1; /**< interrupt if new ALG_RESULT_DAT crosses on of the thresholds */
uint8_t int_datardy: 1; /**< interrupt if new sample is ready in ALG_RESULT_DAT */
uint8_t drive_mode : 3; /**< mode number binary coded */
} ccs811_meas_mode_reg_t;
/**
* forward declaration of functions for internal use only
*/
static int _reg_read(const ccs811_t *dev, uint8_t reg, uint8_t *data, uint32_t len);
static int _reg_write(const ccs811_t *dev, uint8_t reg, uint8_t *data, uint32_t len);
static int _check_error_status(const ccs811_t *dev);
static int _error_code(const ccs811_t *dev, uint8_t err_reg);
static int _is_available(const ccs811_t *dev);
int ccs811_init(ccs811_t *dev, const ccs811_params_t *params)
{
ASSERT_PARAM(dev != NULL);
ASSERT_PARAM(params != NULL);
/* init sensor data structure */
dev->params = *params;
int res = CCS811_OK;
#if MODULE_CCS811_FULL
if (dev->params.reset_pin != GPIO_UNDEF &&
gpio_init(dev->params.reset_pin, GPIO_OUT) == 0) {
DEBUG_DEV("nRESET pin configured", dev);
/* enable low active reset signal */
gpio_clear(dev->params.reset_pin);
/* t_RESET (reset impuls) has to be at least 20 us, we wait 1 ms */
xtimer_usleep(1000);
/* disable low active reset signal */
gpio_set(dev->params.reset_pin);
/* t_START after reset is 1 ms, we wait 1 further ms */
xtimer_usleep(1000);
}
else {
dev->params.reset_pin = GPIO_UNDEF;
DEBUG_DEV("nRESET pin not configured or could not be used", dev);
}
if (dev->params.wake_pin != GPIO_UNDEF &&
gpio_init(dev->params.wake_pin, GPIO_OUT) == 0) {
DEBUG_DEV("nWAKE pin configured", dev);
}
else {
dev->params.wake_pin = GPIO_UNDEF;
DEBUG_DEV("nWAKE pin not configured or could not be used", dev);
}
#endif /* MODULE_CCS811_FULL */
/* check whether sensor is available including the check of the hardware id */
if ((res = _is_available(dev)) != CCS811_OK) {
return res;
}
static const uint8_t sw_reset[4] = { 0x11, 0xe5, 0x72, 0x8a };
/* doing a software reset first */
if (_reg_write(dev, CCS811_REG_SW_RESET, (uint8_t *)sw_reset, 4) != CCS811_OK) {
DEBUG_DEV("could not write software reset command "
"to register CCS811_REG_SW_RESET", dev);
return -CCS811_ERROR_I2C;
}
uint8_t status;
/* wait 100 ms after the reset */
xtimer_usleep(100000);
/* get the status to check whether sensor is in bootloader mode */
if (_reg_read(dev, CCS811_REG_STATUS, &status, 1) != CCS811_OK) {
DEBUG_DEV("could not read register CCS811_REG_STATUS", dev);
return -CCS811_ERROR_I2C;
}
/*
* if sensor is in bootloader mode (FW_MODE == 0), it has to switch
* to the application mode first
*/
if (!(status & CCS811_STATUS_FW_MODE)) {
/* check whether valid application firmware is loaded */
if (!(status & CCS811_STATUS_APP_VALID)) {
DEBUG_DEV("sensor is in boot mode, but has no app", dev);
return -CCS811_ERROR_NO_APP;
}
/* switch to application mode */
if (_reg_write(dev, CCS811_REG_APP_START, 0, 0) != CCS811_OK) {
DEBUG_DEV("could not write app start command "
"to register CCS811_REG_APP_START", dev);
return -CCS811_ERROR_I2C;
}
/* wait 100 ms after starting the app */
xtimer_usleep(100000);
/* get the status to check whether sensor switched to application mode */
if (_reg_read(dev, CCS811_REG_STATUS, &status, 1) != CCS811_OK) {
DEBUG_DEV("could not read register CCS811_REG_STATUS", dev);
return -CCS811_ERROR_I2C;
}
if ((status & CCS811_STATUS_FW_MODE) == 0) {
DEBUG_DEV("could not start application", dev);
return -CCS811_ERROR_NO_APP;
}
}
#if MODULE_CCS811_FULL
/* try to set interrupt mode */
if (dev->params.int_mode != CCS811_INT_NONE &&
(res = ccs811_set_int_mode (dev, dev->params.int_mode)) != CCS811_OK) {
return res;
}
#endif /* MODULE_CCS811_FULL */
/* try to set default measurement mode */
return ccs811_set_mode(dev, dev->params.mode);
}
int ccs811_set_mode(ccs811_t *dev, ccs811_mode_t mode)
{
ASSERT_PARAM(dev != NULL);
ccs811_meas_mode_reg_t reg;
/* read measurement mode register value */
if (_reg_read(dev, CCS811_REG_MEAS_MODE, (uint8_t *)&reg, 1) != CCS811_OK) {
DEBUG_DEV("could not read current measurement mode "
"from register CCS811_REG_MEAS_MODE", dev);
return -CCS811_ERROR_I2C;
}
reg.drive_mode = mode;
/* write back measurement mode register */
if (_reg_write(dev, CCS811_REG_MEAS_MODE, (uint8_t *)&reg, 1) != CCS811_OK) {
DEBUG_DEV("could not write new measurement mode "
"to register CCS811_REG_MEAS_MODE", dev);
return -CCS811_ERROR_I2C;
}
/* check whether setting measurement mode were succesfull */
if (_reg_read(dev, CCS811_REG_MEAS_MODE, (uint8_t *)&reg, 1) != CCS811_OK) {
DEBUG_DEV("could not read new measurement mode "
"from register CCS811_REG_MEAS_MODE", dev);
return -CCS811_ERROR_I2C;
}
if (reg.drive_mode != mode) {
DEBUG_DEV("could not set measurement mode to %d", dev, mode);
return -CCS811_ERROR_MEASMODE_INV;
}
dev->params.mode = mode;
return CCS811_OK;
}
#if MODULE_CCS811_FULL
int ccs811_set_int_mode(ccs811_t *dev, ccs811_int_mode_t mode)
{
ASSERT_PARAM(dev != NULL);
if (dev->params.int_pin == GPIO_UNDEF) {
DEBUG_DEV("nINT pin not configured", dev);
return CCS811_ERROR_NO_INT_PIN;
}
ccs811_meas_mode_reg_t reg;
/* read measurement mode register value */
if (_reg_read(dev, CCS811_REG_MEAS_MODE, (uint8_t *)&reg, 1) != CCS811_OK) {
DEBUG_DEV("could not set interrupt mode, could not read register "
"CCS811_REG_MEAS_MODE", dev);
return CCS811_ERROR_I2C;
}
reg.int_datardy = mode != CCS811_INT_NONE;
reg.int_thresh = mode == CCS811_INT_THRESHOLD;
/* write back measurement mode register */
if (_reg_write(dev, CCS811_REG_MEAS_MODE, (uint8_t *)&reg, 1) != CCS811_OK) {
DEBUG_DEV("could not set interrupt mode, could not write register "
"CCS811_REG_MEAS_MODE", dev);
return CCS811_ERROR_I2C;
}
dev->params.int_mode = mode;
return CCS811_OK;
}
#endif /* MODULE_CCS811_FULL */
int ccs811_data_ready(const ccs811_t *dev)
{
uint8_t status;
/* check status register */
if (_reg_read(dev, CCS811_REG_STATUS, &status, 1) != CCS811_OK) {
DEBUG_DEV("could not read CCS811_REG_STATUS", dev);
return -CCS811_ERROR_I2C;
}
if ((status & CCS811_STATUS_DATA_RDY)) {
/* new data available */
return CCS811_OK;
}
return CCS811_ERROR_NO_NEW_DATA;
}
#define CCS811_ALG_DATA_ECO2_HB 0
#define CCS811_ALG_DATA_ECO2_LB 1
#define CCS811_ALG_DATA_TVOC_HB 2
#define CCS811_ALG_DATA_TVOC_LB 3
#define CCS811_ALG_DATA_STATUS 4
#define CCS811_ALG_DATA_ERROR_ID 5
#define CCS811_ALG_DATA_RAW_HB 6
#define CCS811_ALG_DATA_RAW_LB 7
int ccs811_read_iaq(const ccs811_t *dev,
uint16_t *iaq_tvoc, uint16_t *iaq_eco2,
uint16_t *raw_i, uint16_t *raw_v)
{
ASSERT_PARAM(dev != NULL);
int res = CCS811_OK;
if (dev->params.mode == CCS811_MODE_IDLE) {
DEBUG_DEV("sensor is in idle mode and not performing "
"measurements", dev);
return -CCS811_ERROR_MEASMODE_INV;
}
if (dev->params.mode == CCS811_MODE_250MS && (iaq_tvoc || iaq_eco2)) {
DEBUG_DEV("sensor is in constant power mode, only raw data "
"are available every 250ms", dev);
return -CCS811_ERROR_NO_IAQ_DATA;
}
uint8_t data[8];
/* read IAQ sensor values and RAW sensor data including status and error id */
if (_reg_read(dev, CCS811_REG_ALG_RESULT_DATA, data, 8) != CCS811_OK) {
DEBUG_DEV("could not read sensor data from "
"register CCS811_REG_ALG_RESULT_DATA", dev);
return -CCS811_ERROR_I2C;
}
/* check for errors */
if (data[CCS811_ALG_DATA_STATUS] & CCS811_STATUS_ERROR) {
return _error_code(dev, data[CCS811_ALG_DATA_ERROR_ID]);
}
/*
* check whether new data are ready to read; if not, latest values read
* from sensor are used and error code CCS811_ERROR_NO_NEW_DATA is returned
*/
if (!(data[CCS811_ALG_DATA_STATUS] & CCS811_STATUS_DATA_RDY)) {
DEBUG_DEV("no new data", dev);
res = -CCS811_ERROR_NO_NEW_DATA;
}
/* if *iaq* is not NULL return IAQ sensor values */
if (iaq_tvoc) {
*iaq_tvoc = data[CCS811_ALG_DATA_TVOC_HB] << 8;
*iaq_tvoc |= data[CCS811_ALG_DATA_TVOC_LB];
}
if (iaq_eco2) {
*iaq_eco2 = data[CCS811_ALG_DATA_ECO2_HB] << 8;
*iaq_eco2 |= data[CCS811_ALG_DATA_ECO2_LB];
}
/* if *raw* is not NULL return RAW sensor data */
if (raw_i) {
*raw_i = data[CCS811_ALG_DATA_RAW_HB] >> 2;
}
if (raw_v) {
*raw_v = (data[CCS811_ALG_DATA_RAW_HB] & 0x03) << 8;
*raw_v |= data[CCS811_ALG_DATA_RAW_LB];
}
return res;
}
#if MODULE_CCS811_FULL
int ccs811_read_ntc(const ccs811_t *dev, uint32_t r_ref, uint32_t *r_ntc)
{
ASSERT_PARAM(dev != NULL);
ASSERT_PARAM(r_ntc != NULL);
uint8_t data[4];
/* read baseline register */
if (_reg_read(dev, CCS811_REG_NTC, data, 4) != CCS811_OK) {
DEBUG_DEV("could not read the V_REF and V_NTC "
"from register CCS811_REG_NTC", dev);
return -CCS811_ERROR_I2C;
}
/* calculation from application note ams AN000372 */
uint32_t v_ref = (uint16_t)(data[0]) << 8 | data[1];
uint32_t v_ntc = (uint16_t)(data[2]) << 8 | data[3];
*r_ntc = v_ntc * r_ref / v_ref;
return CCS811_OK;
}
#endif /* MODULE_CCS811_FULL */
int ccs811_power_down (ccs811_t *dev)
{
ASSERT_PARAM(dev != NULL);
if (dev->params.wake_pin == GPIO_UNDEF) {
DEBUG_DEV("nWAKE signal pin not configured", dev);
return CCS811_ERROR_NO_WAKE_PIN;
}
ccs811_mode_t tmp_mode = dev->params.mode;
int res = ccs811_set_mode(dev, CCS811_MODE_IDLE);
dev->params.mode = tmp_mode;
return res;
}
int ccs811_power_up (ccs811_t *dev)
{
ASSERT_PARAM(dev != NULL);
if (dev->params.wake_pin == GPIO_UNDEF) {
DEBUG_DEV("nWAKE signal pin not configured", dev);
return CCS811_ERROR_NO_WAKE_PIN;
}
return ccs811_set_mode(dev, dev->params.mode);
}
#if MODULE_CCS811_FULL
int ccs811_set_environmental_data(const ccs811_t *dev,
int16_t temp, int16_t hum)
{
ASSERT_PARAM(dev != NULL);
temp = (((uint32_t)temp + 2500) << 9) / 100; /* -25 °C maps to 0 */
hum = ((uint32_t)hum << 9) / 100;
/* fill environmental data */
uint8_t data[4] = { temp >> 8, temp & 0xff,
hum >> 8, hum & 0xff };
/* send environmental data to the sensor */
if (_reg_write(dev, CCS811_REG_ENV_DATA, data, 4) != CCS811_OK) {
DEBUG_DEV("could not write environmental data "
"to register CCS811_REG_ENV_DATA", dev);
return CCS811_ERROR_I2C;
}
return CCS811_OK;
}
int ccs811_set_eco2_thresholds(const ccs811_t *dev,
uint16_t low, uint16_t high, uint8_t hyst)
{
ASSERT_PARAM(dev != NULL);
/* check parameters */
if (low < CCS811_ECO2_RANGE_MIN ||
high > CCS811_ECO2_RANGE_MAX || low > high || !hyst) {
DEBUG_DEV("wrong threshold parameters", dev);
return CCS811_ERROR_THRESH_INV;
}
/* fill the threshold data */
uint8_t data[5] = { low >> 8, low & 0xff,
high >> 8, high & 0xff,
hyst };
/* write threshold data to the sensor */
if (_reg_write(dev, CCS811_REG_THRESHOLDS, data, 5) != CCS811_OK) {
DEBUG_DEV("could not set threshold interrupt parameters, "
"could not write register CCS811_REG_THRESHOLDS", dev);
return CCS811_ERROR_I2C;
}
return CCS811_OK;
}
int ccs811_get_baseline(const ccs811_t *dev, uint16_t *base)
{
ASSERT_PARAM(dev != NULL);
ASSERT_PARAM(base != NULL);
uint8_t data[2];
/* read baseline register */
if (_reg_read(dev, CCS811_REG_BASELINE, data, 2) != CCS811_OK) {
DEBUG_DEV("could not get current baseline value, "
"could not read register CCS811_REG_BASELINE", dev);
return CCS811_ERROR_I2C;
}
*base = (uint16_t)(data[0]) << 8 | data[1];
return CCS811_OK;
}
int ccs811_set_baseline(const ccs811_t *dev, uint16_t baseline)
{
ASSERT_PARAM(dev != NULL);
uint8_t data[2] = { baseline >> 8, baseline & 0xff };
/* write baseline register */
if (_reg_write(dev, CCS811_REG_THRESHOLDS, data, 5) != CCS811_OK) {
DEBUG_DEV("could not set baseline value, "
"could not write register CCS811_REG_BASELINE", dev);
return CCS811_ERROR_I2C;
}
return CCS811_OK;
}
#endif /* MODULE_CCS811_FULL */
/**
* function for internal use only
*/
static int _reg_read(const ccs811_t *dev, uint8_t reg, uint8_t *data, uint32_t len)
{
DEBUG_DEV("read %"PRIu32" bytes from sensor registers starting at addr %02x",
dev, len, reg);
int res = CCS811_OK;
if (i2c_acquire(dev->params.i2c_dev) != CCS811_OK) {
DEBUG_DEV("could not aquire I2C bus", dev);
return -CCS811_ERROR_I2C;
}
#if MODULE_CCS811_FULL
if (dev->params.wake_pin != GPIO_UNDEF) {
/* wake the sensor with low active WAKE signal */
gpio_clear(dev->params.wake_pin);
/* t_WAKE is 50 us */
xtimer_usleep(50);
}
#endif
res = i2c_read_regs(dev->params.i2c_dev, dev->params.i2c_addr, reg, data, len, 0);
i2c_release(dev->params.i2c_dev);
#if MODULE_CCS811_FULL
if (dev->params.wake_pin != GPIO_UNDEF) {
/* let the sensor enter to sleep mode */
gpio_set(dev->params.wake_pin);
/* minimum t_DWAKE is 20 us */
xtimer_usleep(20);
}
#endif
if (res == CCS811_OK) {
if (ENABLE_DEBUG) {
printf("[ccs811] %s dev=%d addr=%02x: read following bytes: ",
__func__, dev->params.i2c_dev, dev->params.i2c_addr);
for (unsigned i = 0; i < len; i++) {
printf("%02x ", data[i]);
}
printf("\n");
}
}
else {
DEBUG_DEV("could not read %"PRIu32" bytes from sensor registers "
"starting at addr %02x, reason %d (%s)",
dev, len, reg, res, strerror(res * -1));
return -CCS811_ERROR_I2C;
}
return CCS811_OK;
}
static int _reg_write(const ccs811_t *dev, uint8_t reg, uint8_t *data, uint32_t len)
{
DEBUG_DEV("write %"PRIu32" bytes to sensor registers starting at addr %02x",
dev, len, reg);
int res = CCS811_OK;
if (ENABLE_DEBUG && data && len) {
printf("[css811] %s dev=%d addr=%02x: write following bytes: ",
__func__, dev->params.i2c_dev, dev->params.i2c_addr);
for (unsigned i = 0; i < len; i++) {
printf("%02x ", data[i]);
}
printf("\n");
}
if (i2c_acquire(dev->params.i2c_dev)) {
DEBUG_DEV("could not aquire I2C bus", dev);
return -CCS811_ERROR_I2C;
}
#if MODULE_CCS811_FULL
if (dev->params.wake_pin != GPIO_UNDEF) {
/* wake the sensor with low active WAKE signal */
gpio_clear(dev->params.wake_pin);
/* t_WAKE is 50 us */
xtimer_usleep(50);
}
#endif
if (!data || !len) {
res = i2c_write_byte(dev->params.i2c_dev, dev->params.i2c_addr, reg, 0);
}
else {
res = i2c_write_regs(dev->params.i2c_dev, dev->params.i2c_addr, reg, data, len, 0);
}
i2c_release(dev->params.i2c_dev);
#if MODULE_CCS811_FULL
if (dev->params.wake_pin != GPIO_UNDEF) {
/* let the sensor enter to sleep mode */
gpio_set(dev->params.wake_pin);
/* minimum t_DWAKE is 20 us */
xtimer_usleep(20);
}
#endif
if (res != CCS811_OK) {
DEBUG_DEV("could not write %"PRIu32" bytes to sensor registers "
"starting at addr %02x, reason %i (%s)",
dev, len, reg, res, strerror(res * -1));
return -CCS811_ERROR_I2C;
}
return CCS811_OK;
}
static int _error_code(const ccs811_t *dev, uint8_t err_reg)
{
if (err_reg & CCS811_ERR_WRITE_REG_INV) {
DEBUG_DEV("invalid register address on write", dev);
return -CCS811_ERROR_WRITE_REG_INV;
}
if (err_reg & CCS811_ERR_READ_REG_INV) {
DEBUG_DEV("invalid register address on read", dev);
return -CCS811_ERROR_READ_REG_INV;
}
if (err_reg & CCS811_ERR_MEASMODE_INV) {
DEBUG_DEV("invalid requested measurement mode", dev);
return -CCS811_ERROR_MEASMODE_INV;
}
if (err_reg & CCS811_ERR_MAX_RESISTANCE) {
DEBUG_DEV("sensor resistance measurement has reached "
"or exceeded the maximum range", dev);
return -CCS811_ERROR_MAX_RESISTANCE;
}
if (err_reg & CCS811_ERR_HEATER_FAULT) {
DEBUG_DEV("heater current not in range", dev);
return -CCS811_ERROR_HEATER_FAULT;
}
if (err_reg & CCS811_ERR_HEATER_SUPPLY) {
DEBUG_DEV("heater voltage is not being applied correctly", dev);
return -CCS811_ERROR_HEATER_SUPPLY;
}
return CCS811_OK;
}
static int _check_error_status(const ccs811_t *dev)
{
uint8_t status;
uint8_t err_reg;
/* check status register */
if (_reg_read(dev, CCS811_REG_STATUS, &status, 1) != CCS811_OK) {
DEBUG_DEV("could not read CCS811_REG_STATUS", dev);
return -CCS811_ERROR_I2C;
}
if (!(status & CCS811_STATUS_ERROR)) {
/* everything is OK */
return CCS811_OK;
}
/* Check the error id register */
if (_reg_read(dev, CCS811_REG_ERROR_ID, &err_reg, 1) != CCS811_OK) {
DEBUG_DEV("could not read CCS811_REG_ERROR_ID", dev);
return -CCS811_ERROR_I2C;
}
if (err_reg != 0) {
return _error_code(dev, err_reg);
}
return CCS811_OK;
}
static int _is_available(const ccs811_t *dev)
{
uint8_t reg_data[5];
/* check hardware id (register 0x20) and hardware version (register 0x21) */
if (_reg_read(dev, CCS811_REG_HW_ID, reg_data, 5) != CCS811_OK) {
DEBUG_DEV("could not read CCS811_REG_HW_ID", dev);
return -CCS811_ERROR_I2C;
}
if (reg_data[0] != CCS811_HW_ID) {
DEBUG_DEV("wrong hardware ID %02x, should be %02x",
dev, reg_data[0], CCS811_HW_ID);
return -CCS811_ERROR_NO_DEV;
}
DEBUG_DEV("hardware version: %02x", dev, reg_data[1]);
DEBUG_DEV("firmware boot version: %02x", dev, reg_data[3]);
DEBUG_DEV("firmware app version: %02x", dev, reg_data[4]);
return _check_error_status(dev);
}