1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-15 20:32:43 +01:00
RIOT/cpu/sam0_common/include/periph_cpu_common.h
2021-08-13 19:50:38 +02:00

1244 lines
36 KiB
C

/*
* Copyright (C) 2016 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_sam0_common
* @brief Common CPU specific definitions for all SAMx21 based CPUs
* @{
*
* @file
* @brief Common CPU specific definitions for all SAMx21 based CPUs
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Dylan Laduranty <dylan.laduranty@mesotic.com>
*/
#ifndef PERIPH_CPU_COMMON_H
#define PERIPH_CPU_COMMON_H
#include "cpu.h"
#include "exti_config.h"
#include "timer_config.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Length of the CPU_ID in octets
*/
#define CPUID_LEN (16U)
/**
* @brief Use shared SPI functions
* @{
*/
#define PERIPH_SPI_NEEDS_INIT_CS
#define PERIPH_SPI_NEEDS_TRANSFER_BYTE
#ifndef MODULE_PERIPH_DMA
#define PERIPH_SPI_NEEDS_TRANSFER_REG
#define PERIPH_SPI_NEEDS_TRANSFER_REGS
#endif
/** @} */
/**
* @name Use shared I2C functions
* @{
*/
#define PERIPH_I2C_NEED_READ_REG
#define PERIPH_I2C_NEED_READ_REGS
#define PERIPH_I2C_NEED_WRITE_REG
#define PERIPH_I2C_NEED_WRITE_REGS
/** @} */
/**
* @brief Override GPIO type
* @{
*/
#define HAVE_GPIO_T
typedef uint32_t gpio_t;
/** @} */
/**
* @brief Definition of a fitting UNDEF value
*/
#define GPIO_UNDEF (0xffffffff)
/**
* @brief Macro for accessing GPIO pins
* @{
*/
#ifdef MODULE_PERIPH_GPIO_FAST_READ
#ifdef PORT_IOBUS_SEC
#define GPIO_PIN(x, y) (((gpio_t)(&PORT_IOBUS_SEC->Group[x])) | y)
#else /* Use IOBUS access when available */
#define GPIO_PIN(x, y) (((gpio_t)(&PORT_IOBUS->Group[x])) | y)
#endif /* PORT_IOBUS_SEC */
#else
#ifdef PORT_SEC
#define GPIO_PIN(x, y) (((gpio_t)(&PORT_SEC->Group[x])) | y)
#else
#define GPIO_PIN(x, y) (((gpio_t)(&PORT->Group[x])) | y)
#endif /* PORT_IOBUS_SEC */
#endif
/**
* @brief Available ports on the SAMD21 & SAML21
*/
enum {
PA = 0, /**< port A */
PB = 1, /**< port B */
PC = 2, /**< port C */
PD = 3, /**< port D */
};
/**
* @brief Generate GPIO mode bitfields
*
* We use 3 bit to determine the pin functions:
* - bit 0: PD(0) or PU(1)
* - bit 1: input enable
* - bit 2: pull enable
*/
#define GPIO_MODE(pr, ie, pe) (pr | (ie << 1) | (pe << 2))
#ifndef DOXYGEN
/**
* @brief Override GPIO modes
*/
#define HAVE_GPIO_MODE_T
typedef enum {
GPIO_IN = GPIO_MODE(0, 1, 0), /**< IN */
GPIO_IN_PD = GPIO_MODE(0, 1, 1), /**< IN with pull-down */
GPIO_IN_PU = GPIO_MODE(1, 1, 1), /**< IN with pull-up */
GPIO_OUT = GPIO_MODE(0, 0, 0), /**< OUT (push-pull) */
GPIO_OD = 0xfe, /**< not supported by HW */
GPIO_OD_PU = 0xff /**< not supported by HW */
} gpio_mode_t;
/**
* @brief Override active flank configuration values
* @{
*/
#define HAVE_GPIO_FLANK_T
typedef enum {
GPIO_FALLING = 2, /**< emit interrupt on falling flank */
GPIO_RISING = 1, /**< emit interrupt on rising flank */
GPIO_BOTH = 3 /**< emit interrupt on both flanks */
} gpio_flank_t;
/** @} */
#endif /* ndef DOXYGEN */
/**
* @brief Available MUX values for configuring a pin's alternate function
*/
#ifndef SAM_MUX_T
typedef enum {
GPIO_MUX_A = 0x0, /**< select peripheral function A */
GPIO_MUX_B = 0x1, /**< select peripheral function B */
GPIO_MUX_C = 0x2, /**< select peripheral function C */
GPIO_MUX_D = 0x3, /**< select peripheral function D */
GPIO_MUX_E = 0x4, /**< select peripheral function E */
GPIO_MUX_F = 0x5, /**< select peripheral function F */
GPIO_MUX_G = 0x6, /**< select peripheral function G */
GPIO_MUX_H = 0x7, /**< select peripheral function H */
GPIO_MUX_L = 0xb, /**< select peripheral function L */
} gpio_mux_t;
#endif
/**
* @brief Available values for SERCOM UART RX pad selection
*/
typedef enum {
UART_PAD_RX_0 = 0x0, /**< use pad 0 for RX line */
UART_PAD_RX_1 = 0x1, /**< select pad 1 */
UART_PAD_RX_2 = 0x2, /**< select pad 2 */
UART_PAD_RX_3 = 0x3, /**< select pad 3 */
} uart_rxpad_t;
/**
* @brief Available values for SERCOM UART TX pad selection
*/
typedef enum {
UART_PAD_TX_0 = 0x0, /**< select pad 0 */
UART_PAD_TX_2 = 0x1, /**< select pad 2 */
UART_PAD_TX_0_RTS_2_CTS_3 = 0x2, /**< TX is pad 0, on top RTS on pad 2
* and CTS on pad 3 */
} uart_txpad_t;
/**
* @brief Available SERCOM UART flag selections
*/
typedef enum {
UART_FLAG_NONE = 0x0, /**< No flags set */
UART_FLAG_RUN_STANDBY = 0x1, /**< run SERCOM in standby mode */
UART_FLAG_WAKEUP = 0x2, /**< wake from sleep on receive */
} uart_flag_t;
#ifndef DOXYGEN
/**
* @brief Available SERCOM UART data size selections
*
* 9 bit UART mode is currently unavailable as it is not supported by the common
* RIOT UART peripheral API.
* @{
*/
#define HAVE_UART_DATA_BITS_T
typedef enum {
UART_DATA_BITS_5 = 0x5, /**< 5 data bits */
UART_DATA_BITS_6 = 0x6, /**< 6 data bits */
UART_DATA_BITS_7 = 0x7, /**< 7 data bits */
UART_DATA_BITS_8 = 0x0, /**< 8 data bits */
} uart_data_bits_t;
/** @} */
/**
* @brief UART pin getters
* @{
*/
#define uart_pin_rx(dev) uart_config[dev].rx_pin
#define uart_pin_tx(dev) uart_config[dev].tx_pin
/** @} */
#endif /* ndef DOXYGEN */
/**
* @brief Size of the UART TX buffer for non-blocking mode.
*/
#ifndef UART_TXBUF_SIZE
#define UART_TXBUF_SIZE (64)
#endif
/**
* @brief UART device configuration
*
* The frequency f() of the clock `gclk_src` must fulfill the condition
*
* 16 * baud < f(gclk_src) ≤ 2²⁰ * baud
*
* in Asynchronous Arithmetic mode and
*
* 16 * baud < f(gclk_src) ≤ 2¹⁷ * baud
*
* in Asynchronous Fractional mode
*/
typedef struct {
SercomUsart *dev; /**< pointer to the used UART device */
gpio_t rx_pin; /**< pin used for RX */
gpio_t tx_pin; /**< pin used for TX */
#ifdef MODULE_PERIPH_UART_HW_FC
gpio_t rts_pin; /**< pin used for RTS */
gpio_t cts_pin; /**< pin used for CTS */
#endif
gpio_mux_t mux; /**< alternative function for pins */
uart_rxpad_t rx_pad; /**< pad selection for RX line */
uart_txpad_t tx_pad; /**< pad selection for TX line */
uart_flag_t flags; /**< set optional SERCOM flags */
uint8_t gclk_src; /**< GCLK source which supplys SERCOM */
} uart_conf_t;
enum {
TIMER_TYPE_TC, /**< Timer is a TC timer */
TIMER_TYPE_TCC, /**< Timer is a TCC timer */
};
/**
* @brief Common configuration for timer devices
*/
typedef struct {
union {
#ifdef REV_TC
Tc *tc; /**< TC device to use */
#endif
#ifdef REV_TCC
Tcc *tcc; /**< TCC device to use */
#endif
} dev; /**< The Timer device used for PWM */
#ifdef MCLK
volatile uint32_t *mclk; /**< Pointer to MCLK->APBxMASK.reg */
uint32_t mclk_mask; /**< MCLK_APBxMASK bits to enable Timer */
#else
uint32_t pm_mask; /**< PM_APBCMASK bits to enable Timer */
#endif
uint16_t gclk_id; /**< TCn_GCLK_ID */
uint8_t type; /**< Timer type (TC/TCC) */
} tc_tcc_cfg_t;
/**
* @brief Static initializer for TC timer configuration
*/
#ifdef MCLK
#define TC_CONFIG(tim) { \
.dev = {.tc = tim}, \
.mclk = MCLK_ ## tim, \
.mclk_mask = MCLK_ ## tim ## _MASK, \
.gclk_id = tim ## _GCLK_ID, \
.type = TIMER_TYPE_TC, }
#else
#define TC_CONFIG(tim) { \
.dev = {.tc = tim}, \
.pm_mask = PM_APBCMASK_ ## tim, \
.gclk_id = tim ## _GCLK_ID, \
.type = TIMER_TYPE_TC, }
#endif
/**
* @brief Static initializer for TCC timer configuration
*/
#ifdef MCLK
#define TCC_CONFIG(tim) { \
.dev = {.tcc = tim}, \
.mclk = MCLK_ ## tim, \
.mclk_mask = MCLK_ ## tim ## _MASK, \
.gclk_id = tim ## _GCLK_ID, \
.type = TIMER_TYPE_TCC, }
#else
#define TCC_CONFIG(tim) { \
.dev = {.tcc = tim}, \
.pm_mask = PM_APBCMASK_ ## tim, \
.gclk_id = tim ## _GCLK_ID, \
.type = TIMER_TYPE_TCC, }
#endif
/**
* @brief PWM channel configuration data structure
*/
typedef struct {
gpio_t pin; /**< GPIO pin */
gpio_mux_t mux; /**< pin function multiplex value */
uint8_t chan; /**< TCC channel to use */
} pwm_conf_chan_t;
/**
* @brief PWM device configuration data structure
*/
typedef struct {
tc_tcc_cfg_t tim; /**< timer configuration */
const pwm_conf_chan_t *chan; /**< channel configuration */
uint8_t chan_numof; /**< number of channels */
uint8_t gclk_src; /**< GCLK source which clocks TIMER */
} pwm_conf_t;
/**
* @brief Available values for SERCOM SPI MISO pad selection
*/
typedef enum {
SPI_PAD_MISO_0 = 0x0, /**< use pad 0 for MISO line */
SPI_PAD_MISO_1 = 0x1, /**< use pad 1 for MISO line */
SPI_PAD_MISO_2 = 0x2, /**< use pad 2 for MISO line */
SPI_PAD_MISO_3 = 0x3, /**< use pad 3 for MISO line */
} spi_misopad_t;
/**
* @brief Available values for SERCOM SPI MOSI and SCK pad selection
*/
typedef enum {
SPI_PAD_MOSI_0_SCK_1 = 0x0, /**< use pad 0 for MOSI, pad 1 for SCK */
SPI_PAD_MOSI_2_SCK_3 = 0x1, /**< use pad 2 for MOSI, pad 3 for SCK */
SPI_PAD_MOSI_3_SCK_1 = 0x2, /**< use pad 3 for MOSI, pad 1 for SCK */
SPI_PAD_MOSI_0_SCK_3 = 0x3, /**< use pad 0 for MOSI, pad 3 for SCK */
} spi_mosipad_t;
#ifndef DOXYGEN
/**
* @brief Override SPI modes
* @{
*/
#define HAVE_SPI_MODE_T
typedef enum {
SPI_MODE_0 = 0x0, /**< CPOL=0, CPHA=0 */
SPI_MODE_1 = 0x1, /**< CPOL=0, CPHA=1 */
SPI_MODE_2 = 0x2, /**< CPOL=1, CPHA=0 */
SPI_MODE_3 = 0x3 /**< CPOL=1, CPHA=1 */
} spi_mode_t;
/** @} */
/**
* @brief Override SPI clock speed values
* @{
*/
#define HAVE_SPI_CLK_T
typedef enum {
SPI_CLK_100KHZ = 100000U, /**< drive the SPI bus with 100KHz */
SPI_CLK_400KHZ = 400000U, /**< drive the SPI bus with 400KHz */
SPI_CLK_1MHZ = 1000000U, /**< drive the SPI bus with 1MHz */
SPI_CLK_5MHZ = 5000000U, /**< drive the SPI bus with 5MHz */
SPI_CLK_10MHZ = 10000000U /**< drive the SPI bus with 10MHz */
} spi_clk_t;
/** @} */
/**
* @brief SPI pin getters
* @{
*/
#define spi_pin_mosi(dev) spi_config[dev].mosi_pin
#define spi_pin_miso(dev) spi_config[dev].miso_pin
#define spi_pin_clk(dev) spi_config[dev].clk_pin
/** @} */
#endif /* ndef DOXYGEN */
/**
* @brief SPI device configuration
*/
typedef struct {
void *dev; /**< pointer to the used SPI device */
gpio_t miso_pin; /**< used MISO pin */
gpio_t mosi_pin; /**< used MOSI pin */
gpio_t clk_pin; /**< used CLK pin */
gpio_mux_t miso_mux; /**< alternate function for MISO pin (mux) */
gpio_mux_t mosi_mux; /**< alternate function for MOSI pin (mux) */
gpio_mux_t clk_mux; /**< alternate function for CLK pin (mux) */
spi_misopad_t miso_pad; /**< pad to use for MISO line */
spi_mosipad_t mosi_pad; /**< pad to use for MOSI and CLK line */
uint8_t gclk_src; /**< GCLK source which supplys SERCOM */
#ifdef MODULE_PERIPH_DMA
uint8_t tx_trigger; /**< DMA trigger */
uint8_t rx_trigger; /**< DMA trigger */
#endif
} spi_conf_t;
/** @} */
/**
* @brief Available SERCOM I2C flag selections
*/
typedef enum {
I2C_FLAG_NONE = 0x0, /**< No flags set */
I2C_FLAG_RUN_STANDBY = 0x1, /**< run SERCOM in standby mode */
} i2c_flag_t;
#ifndef DOXYGEN
/**
* @name Override I2C clock speed values
* @{
*/
#define HAVE_I2C_SPEED_T
typedef enum {
I2C_SPEED_LOW = 10000U, /**< low speed mode: ~10kbit/s */
I2C_SPEED_NORMAL = 100000U, /**< normal mode: ~100kbit/s */
I2C_SPEED_FAST = 400000U, /**< fast mode: ~400kbit/s */
I2C_SPEED_FAST_PLUS = 1000000U, /**< fast plus mode: ~1Mbit/s */
I2C_SPEED_HIGH = 3400000U, /**< high speed mode: ~3.4Mbit/s */
} i2c_speed_t;
/** @} */
/**
* @name I2C pin getter functions
* @{
*/
#define i2c_pin_sda(dev) i2c_config[dev].sda_pin
#define i2c_pin_scl(dev) i2c_config[dev].scl_pin
/** @} */
#endif /* ndef DOXYGEN */
/**
* @brief I2C device configuration
* The frequency f() of the clock `gclk_src` must fulfill the condition
*
* 4 * speed ≤ f(gclk_src) ≤ 512 * speed
*
* if speed ≤ 1 MHz and
*
* 12 * speed ≤ f(gclk_src) ≤ 520 * speed
*
* if speed > 1 MHz
*/
typedef struct {
SercomI2cm *dev; /**< pointer to the used I2C device */
i2c_speed_t speed; /**< baudrate used for the bus */
gpio_t scl_pin; /**< used SCL pin */
gpio_t sda_pin; /**< used MOSI pin */
gpio_mux_t mux; /**< alternate function (mux) */
uint8_t gclk_src; /**< GCLK source which supplys SERCOM */
uint8_t flags; /**< allow SERCOM to run in standby mode */
} i2c_conf_t;
/**
* @brief Timer device configuration
*/
typedef struct {
Tc *dev; /**< pointer to the used Timer device */
IRQn_Type irq; /**< IRQ# of Timer Interrupt */
#ifdef MCLK
volatile uint32_t *mclk;/**< Pointer to MCLK->APBxMASK.reg */
uint32_t mclk_mask; /**< MCLK_APBxMASK bits to enable Timer */
uint16_t gclk_id; /**< TCn_GCLK_ID */
#else
uint32_t pm_mask; /**< PM_APBCMASK bits to enable Timer */
uint16_t gclk_ctrl; /**< GCLK_CLKCTRL_ID for the Timer */
#endif
uint8_t gclk_src; /**< GCLK source which supplys Timer */
uint16_t flags; /**< flags for CTRA, e.g. TC_CTRLA_MODE_COUNT32 */
} tc32_conf_t;
/**
* @brief Number of available timer channels
*/
#define TIMER_CHANNEL_NUMOF (2)
/**
* @brief Set up alternate function (PMUX setting) for a PORT pin
*
* @param[in] pin Pin to set the multiplexing for
* @param[in] mux Mux value
*/
void gpio_init_mux(gpio_t pin, gpio_mux_t mux);
/**
* @brief Called before the power management enters a power mode
*
* @param[in] deep
*/
void gpio_pm_cb_enter(int deep);
/**
* @brief Called after the power management left a power mode
*
* @param[in] deep
*/
void gpio_pm_cb_leave(int deep);
/**
* @brief Called before the power management enters a power mode
*
* @param[in] deep
*/
void cpu_pm_cb_enter(int deep);
/**
* @brief Called after the power management left a power mode
*
* @param[in] deep
*/
void cpu_pm_cb_leave(int deep);
/**
* @brief Wrapper for cortexm_sleep calling power management callbacks
*
* @param[in] deep
*/
static inline void sam0_cortexm_sleep(int deep)
{
#ifdef MODULE_PERIPH_GPIO
gpio_pm_cb_enter(deep);
#endif
cpu_pm_cb_enter(deep);
cortexm_sleep(deep);
cpu_pm_cb_leave(deep);
#ifdef MODULE_PERIPH_GPIO
gpio_pm_cb_leave(deep);
#endif
}
/**
* @brief Disable alternate function (PMUX setting) for a PORT pin
*
* @param[in] pin Pin to reset the multiplexing for
*/
void gpio_disable_mux(gpio_t pin);
/**
* @brief Available voltage regulators on the supply controller.
*/
typedef enum {
SAM0_VREG_LDO, /*< LDO, always available but not very power efficient */
SAM0_VREG_BUCK /*< Buck converter, efficient but may clash with internal
fast clock generators (see errata sheets) */
} sam0_supc_t;
/**
* @brief Switch the internal voltage regulator used for generating the
* internal MCU voltages.
* Available options are:
*
* - LDO: not very efficient, but will always work
* - BUCK converter: Most efficient, but incompatible with the
* use of DFLL or DPLL.
* Please refer to the errata sheet, further restrictions may
* apply depending on the MCU.
*
* @param[in] src
*/
static inline void sam0_set_voltage_regulator(sam0_supc_t src)
{
#ifdef REG_SUPC_VREG
SUPC->VREG.bit.SEL = src;
while (!SUPC->STATUS.bit.VREGRDY) {}
#else
(void) src;
assert(0);
#endif
}
/**
* @brief Returns the frequency of a GCLK provider.
*
* @param[in] id The ID of the GCLK
*
* @return The frequency of the GCLK with the given ID.
*/
uint32_t sam0_gclk_freq(uint8_t id);
/**
* @brief Enables an on-demand GCLK that has been configured in cpu.c
*
* @param[in] id The ID of the GCLK
*/
void sam0_gclk_enable(uint8_t id);
/**
* @brief Return the numeric id of a SERCOM device derived from its address
*
* @param[in] sercom SERCOM device
*
* @return numeric id of the given SERCOM device
*/
static inline uint8_t sercom_id(const void *sercom)
{
#ifdef SERCOM0
if (sercom == SERCOM0) {
return 0;
}
#endif
#ifdef SERCOM1
if (sercom == SERCOM1) {
return 1;
}
#endif
#ifdef SERCOM2
if (sercom == SERCOM2) {
return 2;
}
#endif
#ifdef SERCOM3
if (sercom == SERCOM3) {
return 3;
}
#endif
#ifdef SERCOM4
if (sercom == SERCOM4) {
return 4;
}
#endif
#ifdef SERCOM5
if (sercom == SERCOM5) {
return 5;
}
#endif
#ifdef SERCOM6
if (sercom == SERCOM6) {
return 6;
}
#endif
#ifdef SERCOM7
if (sercom == SERCOM7) {
return 7;
}
#endif
/* should not be reached, so fail with assert */
assert(false);
return SERCOM_INST_NUM;
}
/**
* @brief Enable peripheral clock for given SERCOM device
*
* @param[in] sercom SERCOM device
*/
static inline void sercom_clk_en(void *sercom)
{
const uint8_t id = sercom_id(sercom);
#if defined(CPU_COMMON_SAMD21)
PM->APBCMASK.reg |= (PM_APBCMASK_SERCOM0 << id);
#elif defined (CPU_COMMON_SAMD5X)
if (id < 2) {
MCLK->APBAMASK.reg |= (1 << (id + 12));
} else if (id < 4) {
MCLK->APBBMASK.reg |= (1 << (id + 7));
} else {
MCLK->APBDMASK.reg |= (1 << (id - 4));
}
#else
if (id < 5) {
MCLK->APBCMASK.reg |= (MCLK_APBCMASK_SERCOM0 << id);
}
#if defined(CPU_COMMON_SAML21)
else {
MCLK->APBDMASK.reg |= (MCLK_APBDMASK_SERCOM5);
}
#endif /* CPU_COMMON_SAML21 */
#endif
}
/**
* @brief Disable peripheral clock for given SERCOM device
*
* @param[in] sercom SERCOM device
*/
static inline void sercom_clk_dis(void *sercom)
{
const uint8_t id = sercom_id(sercom);
#if defined(CPU_COMMON_SAMD21)
PM->APBCMASK.reg &= ~(PM_APBCMASK_SERCOM0 << id);
#elif defined (CPU_COMMON_SAMD5X)
if (id < 2) {
MCLK->APBAMASK.reg &= ~(1 << (id + 12));
} else if (id < 4) {
MCLK->APBBMASK.reg &= ~(1 << (id + 7));
} else {
MCLK->APBDMASK.reg &= ~(1 << (id - 4));
}
#else
if (id < 5) {
MCLK->APBCMASK.reg &= ~(MCLK_APBCMASK_SERCOM0 << id);
}
#if defined (CPU_COMMON_SAML21)
else {
MCLK->APBDMASK.reg &= ~(MCLK_APBDMASK_SERCOM5);
}
#endif /* CPU_COMMON_SAML21 */
#endif
}
#ifdef CPU_COMMON_SAMD5X
static inline uint8_t _sercom_gclk_id_core(uint8_t sercom_id) {
if (sercom_id < 2)
return sercom_id + 7;
if (sercom_id < 4)
return sercom_id + 21;
else
return sercom_id + 30;
}
#endif
/**
* @brief Configure generator clock for given SERCOM device
*
* @param[in] sercom SERCOM device
* @param[in] gclk Generator clock
*/
static inline void sercom_set_gen(void *sercom, uint8_t gclk)
{
const uint8_t id = sercom_id(sercom);
sam0_gclk_enable(gclk);
#if defined(CPU_COMMON_SAMD21)
GCLK->CLKCTRL.reg = (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN(gclk) |
(SERCOM0_GCLK_ID_CORE + id));
while (GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY) {}
#elif defined(CPU_COMMON_SAMD5X)
GCLK->PCHCTRL[_sercom_gclk_id_core(id)].reg = (GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN(gclk));
#else
if (id < 5) {
GCLK->PCHCTRL[SERCOM0_GCLK_ID_CORE + id].reg = (GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN(gclk));
}
#if defined(CPU_COMMON_SAML21)
else {
GCLK->PCHCTRL[SERCOM5_GCLK_ID_CORE].reg = (GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN(gclk));
}
#endif /* CPU_COMMON_SAML21 */
#endif
}
/**
* @brief Returns true if the CPU woke deep sleep (backup/standby)
*/
static inline bool cpu_woke_from_backup(void)
{
#ifdef RSTC_RCAUSE_BACKUP
return RSTC->RCAUSE.bit.BACKUP;
#else
return false;
#endif
}
/**
* @brief ADC Channel Configuration
*/
typedef struct {
gpio_t pin; /**< ADC channel pin */
uint32_t muxpos; /**< ADC channel pin multiplexer value */
} adc_conf_chan_t;
/**
* @name Ethernet peripheral parameters
* @{
*/
#ifndef ETH_RX_BUFFER_COUNT
#define ETH_RX_BUFFER_COUNT (4)
#endif
#ifndef ETH_TX_BUFFER_COUNT
#define ETH_TX_BUFFER_COUNT (4)
#endif
#ifndef ETH_RX_BUFFER_SIZE
#define ETH_RX_BUFFER_SIZE (1536)
#endif
#ifndef ETH_TX_BUFFER_SIZE
#define ETH_TX_BUFFER_SIZE (1536)
#endif
/** @} */
/**
* @brief Ethernet parameters struct
*/
#if defined(GMAC_INST_NUM) || defined(DOXYGEN)
typedef struct {
Gmac *dev; /**< ptr to the device registers */
gpio_t refclk; /**< REFCLK gpio */
gpio_t txen; /**< TXEN gpio */
gpio_t txd0; /**< TXD0 gpio */
gpio_t txd1; /**< TXD1 gpio */
gpio_t crsdv; /**< CRSDV gpio */
gpio_t rxd0; /**< RXD0 gpio */
gpio_t rxd1; /**< RXD1 gpio */
gpio_t rxer; /**< RXER gpio */
gpio_t mdc; /**< MII interface, clock gpio */
gpio_t mdio; /**< MII interface, data gpio */
gpio_t rst_pin; /**< PHY reset gpio */
gpio_t int_pin; /**< PHY interrupt gpio */
} sam0_common_gmac_config_t;
#endif
/**
* @brief USB peripheral parameters
*/
#if defined(USB_INST_NUM) || defined(DOXYGEN)
typedef struct {
gpio_t dm; /**< D- line gpio */
gpio_t dp; /**< D+ line gpio */
gpio_mux_t d_mux; /**< alternate function (mux) for data pins */
UsbDevice *device; /**< ptr to the device registers */
uint8_t gclk_src; /**< GCLK source which supplys 48 MHz */
} sam0_common_usb_config_t;
#endif /* USB_INST_NUM */
/**
* @name WDT upper and lower bound times in ms
* @{
*/
/* Limits are in clock cycles according to data sheet.
As the WDT is clocked by a 1024 Hz clock, 1 cycle ≈ 1 ms */
#define NWDT_TIME_LOWER_LIMIT (8U)
#define NWDT_TIME_UPPER_LIMIT (16384U)
/** @} */
/**
* @brief Watchdog can be stopped.
*/
#define WDT_HAS_STOP (1)
/**
* @brief Watchdog has to be initialized.
*/
#define WDT_HAS_INIT (1)
#if defined(REV_DMAC) || DOXYGEN
/**
* @name sam0 DMA peripheral
* @{
*
* The sam0 DMA peripheral has a number of channels. Each channel is a separate
* data stream, triggered by a configurable trigger when enabled, or triggered
* by software (not yet supported). In theory each DMA channel is equal and can
* have a configurable priority and can be triggered by the full set of triggers
* available.
*
* DMA descriptors, specifying a single transfer with size, source and
* destination, are kept in RAM and are read when the channel is enabled and
* triggered. On the SAML21 platform, these descriptors must reside in the LP
* SRAM.
*
* The DMA addresses supplied must point to the **end** of the array to be
* transferred. When address increment is enabled this means that the supplied
* src or dst argument must point to array + length. When increment is disabled,
* the source or destination address can be used directly. The calculation of
* the end of the array must be done by the calling function, because the
* beatsize and the increment can usually be hardcoded there and doesn't have to
* be retrieved from the DMA register configuration.
* See also section 20.6.2.7 of the SAM D21/DA1 Family Data Sheet.
*
* Example:
* ```
* void transfer_data(void *src, void *dst, size_t len)
* {
* dma_t channel = dma_acquire_channel()
* if (channel == 0xff) {
* return -E_BUSY;
* }
*
* dma_setup(channel, DMA_TRIGGER_MY_PERIH, 0, true);
* dma_prepare(channel, DMAC_BTCTRL_BEATSIZE_BYTE_Val,
* (uint8_t*)src + len, (uint8_t*)dst + len, len);
*
* dma_start(channel);
* dma_wait(channel);
*
* dma_release_channel(channel);
* }
* ```
*/
/**
* @brief Indicates that the peripheral doesn't utilize the DMA controller.
* Matches with the register configuration for software based triggers.
*/
#define DMA_TRIGGER_DISABLED 0
/**
* @brief Move the DMA descriptors to the LP SRAM. Required on the SAML21
*/
#if defined(CPU_COMMON_SAML21) || defined(DOXYGEN)
#define DMA_DESCRIPTOR_IN_LPSRAM
#endif
/**
* @brief Extra attributes required for instantiating DMA descriptors.
*/
#ifdef DMA_DESCRIPTOR_IN_LPSRAM
#define DMA_DESCRIPTOR_ATTRS __attribute__((section(".backup.bss")))
#else
#define DMA_DESCRIPTOR_ATTRS
#endif
/**
* @brief DMA channel type
*/
typedef unsigned dma_t;
/**
* @brief Available DMA address increment modes
*/
typedef enum {
DMA_INCR_NONE = 0, /**< Don't increment any addresses after a beat */
DMA_INCR_SRC = 1, /**< Increment the source address after a beat */
DMA_INCR_DEST = 2, /**< Increment destination address after a beat */
DMA_INCR_BOTH = 3, /**< Increment both addresses after a beat */
} dma_incr_t;
/**
* @brief Initialize DMA
*/
void dma_init(void);
/**
* @brief Acquire a DMA channel.
*
* A free DMA channel is marked as allocated and a reference is returned.
* DMA channels can be acquired for long periods of time, e.g. from the start to
* end of a number of transfers or directly at boot and never released.
*
* @returns A reference to the DMA channel
* @returns UINT8_MAX when no DMA channel is available
*/
dma_t dma_acquire_channel(void);
/**
* @brief Release a previously acquired DMA channel
*
* @param dma DMA channel to release
*/
void dma_release_channel(dma_t dma);
/**
* @brief Initialize a previously allocated DMA channel with one-time settings
*
* @param dma DMA channel reference
* @param trigger Trigger to use for this DMA channel
* @param prio Channel priority
* @param irq Whether to enable the interrupt handler for this channel
*/
void dma_setup(dma_t dma, unsigned trigger, uint8_t prio, bool irq);
/**
* @brief Prepare the DMA channel for an individual transfer.
*
* @note When increment is enabled for source or destination, the @p src
* and/or @p dst must point to the **end** of the array.
*
* @param dma DMA channel reference
* @param width Transfer beat size to use
* @param src Source address for the transfer
* @param dst Destination address for the transfer
* @param num Number of beats to transfer
* @param incr Which of the addresses to increment after a beat
*/
void dma_prepare(dma_t dma, uint8_t width, const void *src, void *dst,
size_t num, dma_incr_t incr);
/**
* @brief Prepare a transfer without modifying the destination address
* settings.
*
* Can be used when repeatedly using a dma channel to transfer to the same
* peripheral address, leaving the destination address and related settings
* untouched
*
* @note This only touches the source address, number of transfers and source
* increment settings. Be sure to initialize the full descriptor
* beforehand with @ref dma_prepare
*
* @note When increment is enabled for source, the @p src must point to the
* **end** of the array.
*
* @param dma DMA channel reference
* @param src Source address for the transfer
* @param num Number of beats to transfer
* @param incr Whether to increment the source address after a beat
*/
void dma_prepare_src(dma_t dma, const void *src, size_t num, bool incr);
/**
* @brief Prepare a transfer without modifying the source address
* settings.
*
* Can be used when repeatedly using a dma channel to transfer from the same
* peripheral address, leaving the source address and related settings
* untouched
*
* @note This only touches the destination address, the number of transfers
* and destination increment settings. Be sure to initialize the full
* descriptor beforehand with @ref dma_prepare
*
* @note When increment is enabled for destination, @p dst must point to the
* **end** of the array.
*
* @param dma DMA channel reference
* @param dst Destination address for the transfer
* @param num Number of beats to transfer
* @param incr Whether to increment the destination address after a beat
*/
void dma_prepare_dst(dma_t dma, void *dst, size_t num, bool incr);
/**
* @brief Append a second transfer descriptor after the default channel
* descriptor.
*
* @note Only a single extra transfer descriptor is supported for now.
*
* @note @p next must remain valid throughout the full transfer duration
*
* @note When increment is enabled for source or destination, @p src
* and/or @p dst must point to the **end** of the array.
*
* @param dma DMA channel reference to add the descriptor to
* @param descriptor Extra transfer descriptor to append
* @param width Transfer beat size to use
* @param src Source address for the transfer
* @param dst Destination address for the transfer
* @param num Number of beats to transfer
* @param incr Which of the addresses to increment after a beat
*/
void dma_append(dma_t dma, DmacDescriptor *descriptor, uint8_t width,
const void *src, void *dst, size_t num, dma_incr_t incr);
/**
* @brief Append a second transfer descriptor after the default channel
* descriptor, copying destination and block size from the initial
* descriptor.
*
* @note Only a single extra transfer descriptor is supported for now.
*
* @note @p next must remain valid throughout the full transfer duration
*
* @note When increment is enabled for source, @p src must point to the
* **end** of the array.
*
* @param dma DMA channel reference to add the descriptor to
* @param next Extra transfer descriptor to append
* @param src Source address for the transfer
* @param num Number of beats to transfer
* @param incr Whether to increment the source address after a beat
*/
void dma_append_src(dma_t dma, DmacDescriptor *next, const void *src,
size_t num, bool incr);
/**
* @brief Append a second transfer descriptor after the default channel
* descriptor, copying source and block size from the initial
* descriptor.
*
* @note Only a single extra transfer descriptor is supported for now.
*
* @note @p next must remain valid throughout the full transfer duration
*
* @note When increment is enabled for destination, @p dst must point to the
* **end** of the array.
*
* @param dma DMA channel reference to add the descriptor to
* @param next Extra transfer descriptor to append
* @param dst Destination address for the transfer
* @param num Number of beats to transfer
* @param incr Whether to increment the source address after a beat
*/
void dma_append_dst(dma_t dma, DmacDescriptor *next, void *dst, size_t num,
bool incr);
/**
* @brief Start a DMA transfer.
*
* @param dma DMA channel reference
*/
void dma_start(dma_t dma);
/**
* @brief Wait for a DMA channel to finish the transfer.
*
* This function uses a blocking mutex to wait for the transfer to finish
*
* @note Use only with DMA channels of which the interrupt is enabled
*
* @param dma DMA channel reference
*/
void dma_wait(dma_t dma);
/**
* @brief Cancel an active DMA transfer
*
* It is not harmful to call this on an inactive channel, but it will waste some
* processing time
*
* @param dma DMA channel reference
*/
void dma_cancel(dma_t dma);
/** @} */
#endif /* REV_DMAC || DOXYGEN */
/**
* @name sam0 RTC Tamper Detection
* @{
*/
/**
* @brief Power on the RTC (if the RTC/RTT is not otherwise used)
*/
void rtc_tamper_init(void);
/**
* @brief Enable Tamper Detection IRQs
*
* @param pin The GPIO pin to be used for tamper detection
* @param flank The Flank to trigger the even
*
* @return 0 on success, -1 if pin is not RTC pin
*/
int rtc_tamper_register(gpio_t pin, gpio_flank_t flank);
/**
* @brief Enable Tamper Detection IRQs
*/
void rtc_tamper_enable(void);
/**
* @brief Get and clear the RTC tamper event that has woken the CPU
* from Deep Sleep.
*
* @return The set bits in the return value correspond to the tamper
* pin index inside the @ref rtc_tamper_pins array.
*/
uint8_t rtc_get_tamper_event(void);
/**
* @brief Get the tamper event mask for a certain pin.
* Can be used together with @ref rtc_get_tamper_event to
* check which RTC pin caused the tamper event.
*
* @param pin Pin to query
*
* @return Bit mask with the bit corresponding to @p pin set
* 0 if @p pin is no RTC tamper pin
*/
uint8_t rtc_tamper_pin_mask(gpio_t pin);
/** @} */
/**
* @name sam0 User Configuration
*
* The MCUs of this family contain a region of memory that is used to store
* CPU configuration & calibration data.
* It can be used to set persistent settings and has some additional space
* to store user configuration data.
* @{
*/
/**
* @brief MCU configuration applied on start. The contents of this struct differ
* between families.
*/
typedef struct sam0_aux_cfg_mapping nvm_user_page_t;
/**
* @brief Size of the free to use auxiliary area in the user page
*/
#ifdef FLASH_USER_PAGE_SIZE
#define FLASH_USER_PAGE_AUX_SIZE (FLASH_USER_PAGE_SIZE - sizeof(nvm_user_page_t))
#else
#define FLASH_USER_PAGE_AUX_SIZE (AUX_PAGE_SIZE * AUX_NB_OF_PAGES - sizeof(nvm_user_page_t))
#endif
/**
* @brief Reset the configuration area, apply a new configuration.
*
*
* @param cfg New MCU configuration, may be NULL.
* If cfg is NULL, this will clear the configuration area
* and apply the current configuration again.
*/
void sam0_flashpage_aux_reset(const nvm_user_page_t *cfg);
/**
* @brief Write data to the user configuration area.
* This will write data to the remaining space after @see nvm_user_page_t
* The size of this area depends on the MCU family used.
*
* Will only write bits 1 -> 0. To reset bits to 1, call @see sam0_flashpage_aux_reset
* This will reset the whole user area configuration.
*
* Arbitrary data lengths and offsets are supported.
*
* @param offset Byte offset after @see nvm_user_page_t
* must be less than `FLASH_USER_PAGE_AUX_SIZE`
* @param data The data to write
* @param len Size of the data
*/
void sam0_flashpage_aux_write(uint32_t offset, const void *data, size_t len);
/**
* @brief Get pointer to data in the user configuration area.
*
* @param offset Byte offset after @see nvm_user_page_t
* must be less than `FLASH_USER_PAGE_AUX_SIZE`
* @return Pointer to the data in the User Page
*/
#define sam0_flashpage_aux_get(offset) \
(const void*)((uint8_t*)NVMCTRL_USER + sizeof(nvm_user_page_t) + (offset))
/**
* @brief Get pointer to data in the CPU configuration struct
*
* @return Pointer to the @ref nvm_user_page_t structure
*/
#define sam0_flashpage_aux_cfg() \
((const nvm_user_page_t*)NVMCTRL_USER)
/** @} */
#ifdef __cplusplus
}
#endif
#endif /* PERIPH_CPU_COMMON_H */
/** @} */