1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/drivers/at86rf2xx/at86rf2xx_netdev.c

895 lines
27 KiB
C

/*
* Copyright (C) 2015 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup drivers_at86rf2xx
* @{
*
* @file
* @brief Netdev adaption for the AT86RF2xx drivers
*
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Kévin Roussel <Kevin.Roussel@inria.fr>
*
* @}
*/
#include "net/eui64.h"
#include "net/ieee802154.h"
#include "net/gnrc.h"
#include "at86rf2xx.h"
#include "at86rf2xx_netdev.h"
#include "at86rf2xx_internal.h"
#include "at86rf2xx_registers.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
#define _MAX_MHR_OVERHEAD (25)
/* TODO: generalize and move to (gnrc_)ieee802154 */
static size_t _make_data_frame_hdr(at86rf2xx_t *dev, uint8_t *buf,
gnrc_netif_hdr_t *hdr)
{
int pos = 0;
/* we are building a data frame here */
buf[0] = IEEE802154_FCF_TYPE_DATA;
buf[1] = IEEE802154_FCF_VERS_V1;
/* if AUTOACK is enabled, then we also expect ACKs for this packet */
if (!(hdr->flags & GNRC_NETIF_HDR_FLAGS_BROADCAST) &&
!(hdr->flags & GNRC_NETIF_HDR_FLAGS_MULTICAST) &&
(dev->options & AT86RF2XX_OPT_AUTOACK)) {
buf[0] |= IEEE802154_FCF_ACK_REQ;
}
/* fill in destination PAN ID */
pos = 3;
buf[pos++] = (uint8_t)((dev->pan) & 0xff);
buf[pos++] = (uint8_t)((dev->pan) >> 8);
/* fill in destination address */
if (hdr->flags &
(GNRC_NETIF_HDR_FLAGS_BROADCAST | GNRC_NETIF_HDR_FLAGS_MULTICAST)) {
buf[1] |= IEEE802154_FCF_DST_ADDR_SHORT;
buf[pos++] = 0xff;
buf[pos++] = 0xff;
}
else if (hdr->dst_l2addr_len == 2) {
uint8_t *dst_addr = gnrc_netif_hdr_get_dst_addr(hdr);
buf[1] |= IEEE802154_FCF_DST_ADDR_SHORT;
buf[pos++] = dst_addr[1];
buf[pos++] = dst_addr[0];
}
else if (hdr->dst_l2addr_len == 8) {
buf[1] |= IEEE802154_FCF_DST_ADDR_LONG;
uint8_t *dst_addr = gnrc_netif_hdr_get_dst_addr(hdr);
for (int i = 7; i >= 0; i--) {
buf[pos++] = dst_addr[i];
}
}
else {
/* unsupported address length */
return 0;
}
/* fill in source PAN ID (if applicable */
if (dev->options & AT86RF2XX_OPT_USE_SRC_PAN) {
buf[pos++] = (uint8_t)((dev->pan) & 0xff);
buf[pos++] = (uint8_t)((dev->pan) >> 8);
} else {
buf[0] |= IEEE802154_FCF_PAN_COMP;
}
/* fill in source address */
if (dev->options & AT86RF2XX_OPT_SRC_ADDR_LONG) {
buf[1] |= IEEE802154_FCF_SRC_ADDR_LONG;
memcpy(&(buf[pos]), dev->addr_long, 8);
pos += 8;
}
else {
buf[1] |= IEEE802154_FCF_SRC_ADDR_SHORT;
buf[pos++] = dev->addr_short[0];
buf[pos++] = dev->addr_short[1];
}
/* set sequence number */
buf[2] = dev->seq_nr++;
/* return actual header length */
return pos;
}
/* TODO: generalize and move to ieee802154 */
/* TODO: include security header implications */
static size_t _get_frame_hdr_len(uint8_t *mhr)
{
uint8_t tmp;
size_t len = 3;
/* figure out address sizes */
tmp = (mhr[1] & IEEE802154_FCF_DST_ADDR_MASK);
if (tmp == IEEE802154_FCF_DST_ADDR_SHORT) {
len += 4;
}
else if (tmp == IEEE802154_FCF_DST_ADDR_LONG) {
len += 10;
}
else if (tmp != IEEE802154_FCF_DST_ADDR_VOID) {
return 0;
}
tmp = (mhr[1] & IEEE802154_FCF_SRC_ADDR_MASK);
if (tmp == IEEE802154_FCF_SRC_ADDR_VOID) {
return len;
}
else {
if (!(mhr[0] & IEEE802154_FCF_PAN_COMP)) {
len += 2;
}
if (tmp == IEEE802154_FCF_SRC_ADDR_SHORT) {
return (len + 2);
}
else if (tmp == IEEE802154_FCF_SRC_ADDR_LONG) {
return (len + 8);
}
}
return 0;
}
/* TODO: generalize and move to (gnrc_)ieee802154 */
static gnrc_pktsnip_t *_make_netif_hdr(uint8_t *mhr)
{
uint8_t tmp;
uint8_t *addr;
uint8_t src_len, dst_len;
gnrc_pktsnip_t *snip;
gnrc_netif_hdr_t *hdr;
/* figure out address sizes */
tmp = mhr[1] & IEEE802154_FCF_SRC_ADDR_MASK;
if (tmp == IEEE802154_FCF_SRC_ADDR_SHORT) {
src_len = 2;
}
else if (tmp == IEEE802154_FCF_SRC_ADDR_LONG) {
src_len = 8;
}
else if (tmp == IEEE802154_FCF_SRC_ADDR_VOID) {
src_len = 0;
}
else {
return NULL;
}
tmp = mhr[1] & IEEE802154_FCF_DST_ADDR_MASK;
if (tmp == IEEE802154_FCF_DST_ADDR_SHORT) {
dst_len = 2;
}
else if (tmp == IEEE802154_FCF_DST_ADDR_LONG) {
dst_len = 8;
}
else if (tmp == IEEE802154_FCF_DST_ADDR_VOID) {
dst_len = 0;
}
else {
return NULL;
}
/* allocate space for header */
snip = gnrc_pktbuf_add(NULL, NULL, sizeof(gnrc_netif_hdr_t) + src_len + dst_len,
GNRC_NETTYPE_NETIF);
if (snip == NULL) {
return NULL;
}
/* fill header */
hdr = (gnrc_netif_hdr_t *)snip->data;
gnrc_netif_hdr_init(hdr, src_len, dst_len);
if (dst_len > 0) {
hdr->flags |= GNRC_NETIF_HDR_FLAGS_BROADCAST;
tmp = 5 + dst_len;
addr = gnrc_netif_hdr_get_dst_addr(hdr);
for (int i = 0; i < dst_len; i++) {
addr[i] = mhr[5 + (dst_len - i) - 1];
if(addr[i] != 0xff) {
hdr->flags &= ~(GNRC_NETIF_HDR_FLAGS_BROADCAST);
}
}
}
else {
tmp = 3;
}
if (!(mhr[0] & IEEE802154_FCF_PAN_COMP)) {
tmp += 2;
}
if (src_len > 0) {
addr = gnrc_netif_hdr_get_src_addr(hdr);
for (int i = 0; i < src_len; i++) {
addr[i] = mhr[tmp + (src_len - i) - 1];
}
}
return snip;
}
static int _send(gnrc_netdev_t *netdev, gnrc_pktsnip_t *pkt)
{
at86rf2xx_t *dev = (at86rf2xx_t *)netdev;
gnrc_pktsnip_t *snip;
uint8_t mhr[IEEE802154_MAX_HDR_LEN];
size_t len;
if (pkt == NULL) {
return -ENOMSG;
}
if (dev == NULL) {
gnrc_pktbuf_release(pkt);
return -ENODEV;
}
/* create 802.15.4 header */
len = _make_data_frame_hdr(dev, mhr, (gnrc_netif_hdr_t *)pkt->data);
if (len == 0) {
DEBUG("[at86rf2xx] error: unable to create 802.15.4 header\n");
gnrc_pktbuf_release(pkt);
return -ENOMSG;
}
/* check if packet (header + payload + FCS) fits into FIFO */
snip = pkt->next;
if ((gnrc_pkt_len(snip) + len + 2) > AT86RF2XX_MAX_PKT_LENGTH) {
printf("[at86rf2xx] error: packet too large (%u byte) to be send\n",
gnrc_pkt_len(snip) + len + 2);
gnrc_pktbuf_release(pkt);
return -EOVERFLOW;
}
at86rf2xx_tx_prepare(dev);
/* put header into FIFO */
len = at86rf2xx_tx_load(dev, mhr, len, 0);
/* load packet data into FIFO */
while (snip) {
len = at86rf2xx_tx_load(dev, snip->data, snip->size, len);
snip = snip->next;
}
/* send data out directly if pre-loading id disabled */
if (!(dev->options & AT86RF2XX_OPT_PRELOADING)) {
at86rf2xx_tx_exec(dev);
}
/* release packet */
gnrc_pktbuf_release(pkt);
/* return the number of bytes that were actually send out */
return (int)len;
}
static void _receive_data(at86rf2xx_t *dev)
{
uint8_t mhr[IEEE802154_MAX_HDR_LEN];
size_t pkt_len, hdr_len;
gnrc_pktsnip_t *hdr, *payload = NULL;
gnrc_netif_hdr_t *netif;
/* get the size of the received packet (unlocks frame buffer protection) */
pkt_len = at86rf2xx_rx_len(dev);
/* abort here already if no event callback is registered */
if (!dev->event_cb) {
return;
}
/* in raw mode, just read the binary dump into the packet buffer */
if (dev->options & AT86RF2XX_OPT_RAWDUMP) {
payload = gnrc_pktbuf_add(NULL, NULL, pkt_len, GNRC_NETTYPE_UNDEF);
if (payload == NULL ) {
DEBUG("[at86rf2xx] error: unable to allocate RAW data\n");
return;
}
at86rf2xx_rx_read(dev, payload->data, pkt_len, 0);
dev->event_cb(NETDEV_EVENT_RX_COMPLETE, payload);
return;
}
/* get FCF field and compute 802.15.4 header length */
at86rf2xx_rx_read(dev, mhr, 2, 0);
hdr_len = _get_frame_hdr_len(mhr);
if (hdr_len == 0) {
DEBUG("[at86rf2xx] error: unable parse incoming frame header\n");
return;
}
/* read the rest of the header and parse the netif header from it */
at86rf2xx_rx_read(dev, &(mhr[2]), hdr_len - 2, 2);
hdr = _make_netif_hdr(mhr);
if (hdr == NULL) {
DEBUG("[at86rf2xx] error: unable to allocate netif header\n");
return;
}
/* fill missing fields in netif header */
netif = (gnrc_netif_hdr_t *)hdr->data;
netif->if_pid = dev->mac_pid;
at86rf2xx_rx_read(dev, &(netif->lqi), 1, pkt_len);
netif->rssi = at86rf2xx_reg_read(dev, AT86RF2XX_REG__PHY_ED_LEVEL);
/* allocate payload */
payload = gnrc_pktbuf_add(hdr, NULL, (pkt_len - hdr_len), dev->proto);
if (payload == NULL) {
DEBUG("[at86rf2xx] error: unable to allocate incoming payload\n");
gnrc_pktbuf_release(hdr);
return;
}
/* copy payload */
at86rf2xx_rx_read(dev, payload->data, payload->size, hdr_len);
/* finish up and send data to upper layers */
dev->event_cb(NETDEV_EVENT_RX_COMPLETE, payload);
}
static int _set_state(at86rf2xx_t *dev, netopt_state_t state)
{
switch (state) {
case NETOPT_STATE_SLEEP:
at86rf2xx_set_state(dev, AT86RF2XX_STATE_SLEEP);
break;
case NETOPT_STATE_IDLE:
at86rf2xx_set_state(dev, AT86RF2XX_STATE_RX_AACK_ON);
break;
case NETOPT_STATE_TX:
if (dev->options & AT86RF2XX_OPT_PRELOADING) {
at86rf2xx_tx_exec(dev);
}
break;
case NETOPT_STATE_RESET:
at86rf2xx_reset(dev);
break;
default:
return -ENOTSUP;
}
return sizeof(netopt_state_t);
}
netopt_state_t _get_state(at86rf2xx_t *dev)
{
switch (at86rf2xx_get_status(dev)) {
case AT86RF2XX_STATE_SLEEP:
return NETOPT_STATE_SLEEP;
case AT86RF2XX_STATE_BUSY_RX_AACK:
return NETOPT_STATE_RX;
case AT86RF2XX_STATE_BUSY_TX_ARET:
case AT86RF2XX_STATE_TX_ARET_ON:
return NETOPT_STATE_TX;
case AT86RF2XX_STATE_RX_AACK_ON:
default:
return NETOPT_STATE_IDLE;
}
}
static int _get(gnrc_netdev_t *device, netopt_t opt, void *val, size_t max_len)
{
at86rf2xx_t *dev = (at86rf2xx_t *) device;
if (device == NULL) {
return -ENODEV;
}
/* getting these options doesn't require the transceiver to be responsive */
switch (opt) {
case NETOPT_ADDRESS:
if (max_len < sizeof(uint16_t)) {
return -EOVERFLOW;
}
*((uint16_t *)val) = at86rf2xx_get_addr_short(dev);
return sizeof(uint16_t);
case NETOPT_ADDRESS_LONG:
if (max_len < sizeof(uint64_t)) {
return -EOVERFLOW;
}
*((uint64_t *)val) = at86rf2xx_get_addr_long(dev);
return sizeof(uint64_t);
case NETOPT_ADDR_LEN:
if (max_len < sizeof(uint16_t)) {
return -EOVERFLOW;
}
*((uint16_t *)val) = 2;
return sizeof(uint16_t);
case NETOPT_SRC_LEN:
if (max_len < sizeof(uint16_t)) {
return -EOVERFLOW;
}
if (dev->options & AT86RF2XX_OPT_SRC_ADDR_LONG) {
*((uint16_t *)val) = 8;
}
else {
*((uint16_t *)val) = 2;
}
return sizeof(uint16_t);
case NETOPT_NID:
if (max_len < sizeof(uint16_t)) {
return -EOVERFLOW;
}
*((uint16_t *)val) = dev->pan;
return sizeof(uint16_t);
case NETOPT_IPV6_IID:
if (max_len < sizeof(eui64_t)) {
return -EOVERFLOW;
}
if (dev->options & AT86RF2XX_OPT_SRC_ADDR_LONG) {
uint64_t addr = at86rf2xx_get_addr_long(dev);
ieee802154_get_iid(val, (uint8_t *)&addr, 8);
}
else {
uint16_t addr = at86rf2xx_get_addr_short(dev);
ieee802154_get_iid(val, (uint8_t *)&addr, 2);
}
return sizeof(eui64_t);
case NETOPT_PROTO:
if (max_len < sizeof(gnrc_nettype_t)) {
return -EOVERFLOW;
}
*((gnrc_nettype_t *)val) = dev->proto;
return sizeof(gnrc_nettype_t);
case NETOPT_CHANNEL:
if (max_len < sizeof(uint16_t)) {
return -EOVERFLOW;
}
((uint8_t *)val)[1] = 0;
((uint8_t *)val)[0] = at86rf2xx_get_chan(dev);
return sizeof(uint16_t);
case NETOPT_MAX_PACKET_SIZE:
if (max_len < sizeof(int16_t)) {
return -EOVERFLOW;
}
*((uint16_t *)val) = AT86RF2XX_MAX_PKT_LENGTH - _MAX_MHR_OVERHEAD;
return sizeof(uint16_t);
case NETOPT_STATE:
if (max_len < sizeof(netopt_state_t)) {
return -EOVERFLOW;
}
*((netopt_state_t*)val) = _get_state(dev);
return sizeof(netopt_state_t);
case NETOPT_PRELOADING:
if (dev->options & AT86RF2XX_OPT_PRELOADING) {
*((netopt_enable_t *)val) = NETOPT_ENABLE;
}
else {
*((netopt_enable_t *)val) = NETOPT_DISABLE;
}
return sizeof(netopt_enable_t);
case NETOPT_AUTOACK:
if (dev->options & AT86RF2XX_OPT_AUTOACK) {
*((netopt_enable_t *)val) = NETOPT_ENABLE;
}
else {
*((netopt_enable_t *)val) = NETOPT_DISABLE;
}
return sizeof(netopt_enable_t);
case NETOPT_PROMISCUOUSMODE:
if (dev->options & AT86RF2XX_OPT_PROMISCUOUS) {
*((netopt_enable_t *)val) = NETOPT_ENABLE;
}
else {
*((netopt_enable_t *)val) = NETOPT_DISABLE;
}
return sizeof(netopt_enable_t);
case NETOPT_RAWMODE:
if (dev->options & AT86RF2XX_OPT_RAWDUMP) {
*((netopt_enable_t *)val) = NETOPT_ENABLE;
}
else {
*((netopt_enable_t *)val) = NETOPT_DISABLE;
}
return sizeof(netopt_enable_t);
case NETOPT_RX_START_IRQ:
*((netopt_enable_t *)val) =
!!(dev->options & AT86RF2XX_OPT_TELL_RX_START);
return sizeof(netopt_enable_t);
case NETOPT_RX_END_IRQ:
*((netopt_enable_t *)val) =
!!(dev->options & AT86RF2XX_OPT_TELL_RX_END);
return sizeof(netopt_enable_t);
case NETOPT_TX_START_IRQ:
*((netopt_enable_t *)val) =
!!(dev->options & AT86RF2XX_OPT_TELL_TX_START);
return sizeof(netopt_enable_t);
case NETOPT_TX_END_IRQ:
*((netopt_enable_t *)val) =
!!(dev->options & AT86RF2XX_OPT_TELL_TX_END);
return sizeof(netopt_enable_t);
case NETOPT_CSMA:
*((netopt_enable_t *)val) =
!!(dev->options & AT86RF2XX_OPT_CSMA);
return sizeof(netopt_enable_t);
default:
/* Can still be handled in second switch */
break;
}
uint8_t old_state = at86rf2xx_get_status(dev);
int res = 0;
/* temporarily wake up if sleeping */
if(old_state == AT86RF2XX_STATE_SLEEP) {
at86rf2xx_assert_awake(dev);
}
/* these options require the transceiver to be not sleeping*/
switch (opt) {
case NETOPT_TX_POWER:
if (max_len < sizeof(int16_t)) {
res = -EOVERFLOW;
} else {
*((uint16_t *)val) = at86rf2xx_get_txpower(dev);
res = sizeof(uint16_t);
}
break;
case NETOPT_RETRANS:
if (max_len < sizeof(uint8_t)) {
res = -EOVERFLOW;
} else {
*((uint8_t *)val) = at86rf2xx_get_max_retries(dev);
res = sizeof(uint8_t);
}
break;
case NETOPT_IS_CHANNEL_CLR:
if (at86rf2xx_cca(dev)) {
*((netopt_enable_t *)val) = NETOPT_ENABLE;
}
else {
*((netopt_enable_t *)val) = NETOPT_DISABLE;
}
res = sizeof(netopt_enable_t);
break;
case NETOPT_CSMA_RETRIES:
if (max_len < sizeof(uint8_t)) {
res = -EOVERFLOW;
} else {
*((uint8_t *)val) = at86rf2xx_get_csma_max_retries(dev);
res = sizeof(uint8_t);
}
break;
case NETOPT_CCA_THRESHOLD:
if (max_len < sizeof(int8_t)) {
res = -EOVERFLOW;
} else {
*((int8_t *)val) = at86rf2xx_get_cca_threshold(dev);
res = sizeof(int8_t);
}
break;
default:
res = -ENOTSUP;
}
/* go back to sleep if were sleeping */
if(old_state == AT86RF2XX_STATE_SLEEP) {
at86rf2xx_set_state(dev, AT86RF2XX_STATE_SLEEP);
}
return res;
}
static int _set(gnrc_netdev_t *device, netopt_t opt, void *val, size_t len)
{
at86rf2xx_t *dev = (at86rf2xx_t *) device;
uint8_t old_state = at86rf2xx_get_status(dev);
int res = 0;
if (dev == NULL) {
return -ENODEV;
}
/* temporarily wake up if sleeping */
if(old_state == AT86RF2XX_STATE_SLEEP) {
at86rf2xx_assert_awake(dev);
}
switch (opt) {
case NETOPT_ADDRESS:
if (len > sizeof(uint16_t)) {
res = -EOVERFLOW;
} else {
at86rf2xx_set_addr_short(dev, *((uint16_t*)val));
res = sizeof(uint16_t);
}
break;
case NETOPT_ADDRESS_LONG:
if (len > sizeof(uint64_t)) {
res = -EOVERFLOW;
} else {
at86rf2xx_set_addr_long(dev, *((uint64_t*)val));
res = sizeof(uint64_t);
}
break;
case NETOPT_SRC_LEN:
if (len > sizeof(uint16_t)) {
res = -EOVERFLOW;
} else {
if (*((uint16_t *)val) == 2) {
at86rf2xx_set_option(dev, AT86RF2XX_OPT_SRC_ADDR_LONG,
false);
}
else if (*((uint16_t *)val) == 8) {
at86rf2xx_set_option(dev, AT86RF2XX_OPT_SRC_ADDR_LONG,
true);
}
else {
res = -ENOTSUP;
break;
}
res = sizeof(uint16_t);
}
break;
case NETOPT_NID:
if (len > sizeof(uint16_t)) {
res = -EOVERFLOW;
} else {
at86rf2xx_set_pan(dev, *((uint16_t *)val));
res = sizeof(uint16_t);
}
break;
case NETOPT_PROTO:
if (len != sizeof(gnrc_nettype_t)) {
res = -EINVAL;
}
else {
dev->proto = (gnrc_nettype_t) val;
res = sizeof(gnrc_nettype_t);
}
break;
case NETOPT_CHANNEL:
if (len != sizeof(uint16_t)) {
res = -EINVAL;
} else {
uint8_t chan = ((uint8_t *)val)[0];
if (chan < AT86RF2XX_MIN_CHANNEL ||
chan > AT86RF2XX_MAX_CHANNEL) {
res = -ENOTSUP;
break;
}
at86rf2xx_set_chan(dev, chan);
res = sizeof(uint16_t);
}
break;
case NETOPT_TX_POWER:
if (len > sizeof(int16_t)) {
res = -EOVERFLOW;
} else {
at86rf2xx_set_txpower(dev, *((int16_t *)val));
res = sizeof(uint16_t);
}
break;
case NETOPT_STATE:
if (len > sizeof(netopt_state_t)) {
res = -EOVERFLOW;
} else {
res = _set_state(dev, *((netopt_state_t *)val));
}
break;
case NETOPT_AUTOACK:
at86rf2xx_set_option(dev, AT86RF2XX_OPT_AUTOACK,
((bool *)val)[0]);
res = sizeof(netopt_enable_t);
break;
case NETOPT_RETRANS:
if (len > sizeof(uint8_t)) {
res = -EOVERFLOW;
} else {
at86rf2xx_set_max_retries(dev, *((uint8_t *)val));
res = sizeof(uint8_t);
}
break;
case NETOPT_PRELOADING:
at86rf2xx_set_option(dev, AT86RF2XX_OPT_PRELOADING,
((bool *)val)[0]);
res = sizeof(netopt_enable_t);
break;
case NETOPT_PROMISCUOUSMODE:
at86rf2xx_set_option(dev, AT86RF2XX_OPT_PROMISCUOUS,
((bool *)val)[0]);
res = sizeof(netopt_enable_t);
break;
case NETOPT_RAWMODE:
at86rf2xx_set_option(dev, AT86RF2XX_OPT_RAWDUMP,
((bool *)val)[0]);
res = sizeof(netopt_enable_t);
break;
case NETOPT_RX_START_IRQ:
at86rf2xx_set_option(dev, AT86RF2XX_OPT_TELL_RX_START,
((bool *)val)[0]);
res = sizeof(netopt_enable_t);
break;
case NETOPT_RX_END_IRQ:
at86rf2xx_set_option(dev, AT86RF2XX_OPT_TELL_RX_END,
((bool *)val)[0]);
res = sizeof(netopt_enable_t);
break;
case NETOPT_TX_START_IRQ:
at86rf2xx_set_option(dev, AT86RF2XX_OPT_TELL_TX_START,
((bool *)val)[0]);
res = sizeof(netopt_enable_t);
break;
case NETOPT_TX_END_IRQ:
at86rf2xx_set_option(dev, AT86RF2XX_OPT_TELL_TX_END,
((bool *)val)[0]);
res = sizeof(netopt_enable_t);
break;
case NETOPT_CSMA:
at86rf2xx_set_option(dev, AT86RF2XX_OPT_CSMA,
((bool *)val)[0]);
res = sizeof(netopt_enable_t);
break;
case NETOPT_CSMA_RETRIES:
if( (len > sizeof(uint8_t)) ||
(*((uint8_t *)val) > 5) ) {
res = -EOVERFLOW;
} else if( !(dev->options & AT86RF2XX_OPT_CSMA) ) {
/* If CSMA is disabled, don't allow setting retries */
res = -ENOTSUP;
} else {
at86rf2xx_set_csma_max_retries(dev, *((uint8_t *)val));
res = sizeof(uint8_t);
}
break;
case NETOPT_CCA_THRESHOLD:
if (len > sizeof(int8_t)) {
res = -EOVERFLOW;
} else {
at86rf2xx_set_cca_threshold(dev, *((int8_t *)val));
res = sizeof(int8_t);
}
break;
default:
res = -ENOTSUP;
}
/* go back to sleep if were sleeping and state hasn't been changed */
if( (old_state == AT86RF2XX_STATE_SLEEP) &&
(opt != NETOPT_STATE) ) {
at86rf2xx_set_state(dev, AT86RF2XX_STATE_SLEEP);
}
return res;
}
static int _add_event_cb(gnrc_netdev_t *dev, gnrc_netdev_event_cb_t cb)
{
if (dev == NULL) {
return -ENODEV;
}
if (dev->event_cb) {
return -ENOBUFS;
}
dev->event_cb = cb;
return 0;
}
static int _rem_event_cb(gnrc_netdev_t *dev, gnrc_netdev_event_cb_t cb)
{
if (dev == NULL) {
return -ENODEV;
}
if (dev->event_cb != cb) {
return -ENOENT;
}
dev->event_cb = NULL;
return 0;
}
static void _isr_event(gnrc_netdev_t *device, uint32_t event_type)
{
at86rf2xx_t *dev = (at86rf2xx_t *) device;
uint8_t irq_mask;
uint8_t state;
uint8_t trac_status;
/* If transceiver is sleeping register access is impossible and frames are
* lost anyway, so return immediately.
*/
state = at86rf2xx_get_status(dev);
if(state == AT86RF2XX_STATE_SLEEP)
return;
/* read (consume) device status */
irq_mask = at86rf2xx_reg_read(dev, AT86RF2XX_REG__IRQ_STATUS);
trac_status = at86rf2xx_reg_read(dev, AT86RF2XX_REG__TRX_STATE) &
AT86RF2XX_TRX_STATE_MASK__TRAC;
if (irq_mask & AT86RF2XX_IRQ_STATUS_MASK__RX_START) {
dev->event_cb(NETDEV_EVENT_RX_STARTED, NULL);
DEBUG("[at86rf2xx] EVT - RX_START\n");
}
if (irq_mask & AT86RF2XX_IRQ_STATUS_MASK__TRX_END) {
if(state == AT86RF2XX_STATE_RX_AACK_ON ||
state == AT86RF2XX_STATE_BUSY_RX_AACK) {
DEBUG("[at86rf2xx] EVT - RX_END\n");
if (!(dev->options & AT86RF2XX_OPT_TELL_RX_END)) {
return;
}
_receive_data(dev);
}
else if (state == AT86RF2XX_STATE_TX_ARET_ON ||
state == AT86RF2XX_STATE_BUSY_TX_ARET) {
at86rf2xx_set_state(dev, dev->idle_state);
DEBUG("[at86rf2xx] EVT - TX_END\n");
DEBUG("[at86rf2xx] return to state 0x%x\n", dev->idle_state);
if (dev->event_cb && (dev->options & AT86RF2XX_OPT_TELL_TX_END)) {
switch(trac_status) {
case AT86RF2XX_TRX_STATE__TRAC_SUCCESS:
case AT86RF2XX_TRX_STATE__TRAC_SUCCESS_DATA_PENDING:
dev->event_cb(NETDEV_EVENT_TX_COMPLETE, NULL);
DEBUG("[at86rf2xx] TX SUCCESS\n");
break;
case AT86RF2XX_TRX_STATE__TRAC_NO_ACK:
dev->event_cb(NETDEV_EVENT_TX_NOACK, NULL);
DEBUG("[at86rf2xx] TX NO_ACK\n");
break;
case AT86RF2XX_TRX_STATE__TRAC_CHANNEL_ACCESS_FAILURE:
dev->event_cb(NETDEV_EVENT_TX_MEDIUM_BUSY, NULL);
DEBUG("[at86rf2xx] TX_CHANNEL_ACCESS_FAILURE\n");
break;
default:
DEBUG("[at86rf2xx] Unhandled TRAC_STATUS: %d\n",
trac_status >> 5);
}
}
}
}
}
const gnrc_netdev_driver_t at86rf2xx_driver = {
.send_data = _send,
.add_event_callback = _add_event_cb,
.rem_event_callback = _rem_event_cb,
.get = _get,
.set = _set,
.isr_event = _isr_event,
};