1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/saml21/periph/spi.c

237 lines
5.9 KiB
C

/*
* Copyright (C) 2014 Freie Universität Berlin
* 2015 Kaspar Schleiser <kaspar@schleiser.de>
* FreshTemp, LLC.
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_samd21
* @{
*
* @file spi.c
* @brief Low-level SPI driver implementation
*
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
* @author Troels Hoffmeyer <troels.d.hoffmeyer@gmail.com>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Joakim Gebart <joakim.gebart@eistec.se>
* @author Kaspar Schleiser <kaspar@schleiser.de>
*
* @}
*/
#include "cpu.h"
#include "mutex.h"
#include "periph/gpio.h"
#include "periph/spi.h"
#include "periph_conf.h"
#include "board.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
#if SPI_0_EN || SPI_1_EN
#include "saml21_periph.h"
/**
* @brief Array holding one pre-initialized mutex for each SPI device
*/
static mutex_t locks[] = {
#if SPI_0_EN
[SPI_0] = MUTEX_INIT,
#endif
#if SPI_1_EN
[SPI_1] = MUTEX_INIT,
#endif
#if SPI_2_EN
[SPI_2] = MUTEX_INIT
#endif
};
typedef struct spi_saml21_pin {
uint32_t pin;
uint32_t pmux;
} spi_saml21_pin_t;
typedef struct spi_saml21 {
SercomSpi* dev;
uint32_t mclk;
uint32_t gclk_id;
spi_saml21_pin_t sclk;
spi_saml21_pin_t miso;
spi_saml21_pin_t mosi;
int dipo;
int dopo;
} spi_saml21_t;
static const spi_saml21_t spi[] = {
#if SPI_0_EN
/* SPI device */ /* MCLK flag */ /* GLCK id */ /* SCLK */ /* MISO */ /* MOSI */ /* dipo+dopo */
{ &(SERCOM0->SPI), MCLK_APBCMASK_SERCOM0, SERCOM0_GCLK_ID_CORE, { GPIO(PA,7), 3 }, { GPIO(PA,4), 3 }, { GPIO(PA,6), 3 }, 0, 1 }
#endif
};
int spi_init_master(spi_t dev, spi_conf_t conf, spi_speed_t speed)
{
SercomSpi* spi_dev = spi[dev].dev;
uint8_t dopo = 0;
uint8_t dipo = 0;
uint8_t cpha = 0;
uint8_t cpol = 0;
uint32_t f_baud = 0;
switch(speed)
{
case SPI_SPEED_100KHZ:
f_baud = 100000;
break;
case SPI_SPEED_400KHZ:
f_baud = 400000;
break;
case SPI_SPEED_1MHZ:
f_baud = 1000000;
break;
case SPI_SPEED_5MHZ:
return -1;
case SPI_SPEED_10MHZ:
return -1;
}
switch(conf)
{
case SPI_CONF_FIRST_RISING: /**< first data bit is transacted on the first rising SCK edge */
cpha = 0;
cpol = 0;
break;
case SPI_CONF_SECOND_RISING:/**< first data bit is transacted on the second rising SCK edge */
cpha = 1;
cpol = 0;
break;
case SPI_CONF_FIRST_FALLING:/**< first data bit is transacted on the first falling SCK edge */
cpha = 0;
cpol = 1;
break;
case SPI_CONF_SECOND_FALLING:/**< first data bit is transacted on the second falling SCK edge */
cpha = 1;
cpol = 1;
break;
}
/* Enable sercom4 in power manager */
MCLK->APBCMASK.reg |= spi[dev].mclk;
/* Setup clock */
GCLK->PCHCTRL[ spi[dev].gclk_id ].reg =
GCLK_PCHCTRL_CHEN |
GCLK_PCHCTRL_GEN_GCLK0;
while (!(GCLK->PCHCTRL[spi[dev].gclk_id].reg & GCLK_PCHCTRL_CHEN));
/* SCLK+MOSI = output */
gpio_init(spi[dev].sclk.pin, GPIO_DIR_OUT, GPIO_NOPULL);
gpio_init(spi[dev].mosi.pin, GPIO_DIR_OUT, GPIO_NOPULL);
/* MISO = input */
gpio_init(spi[dev].miso.pin, GPIO_DIR_IN, GPIO_PULLUP);
/*
* Set alternate funcion (PMUX) for our ports.
*/
gpio_init_mux(spi[dev].sclk.pin, spi[dev].sclk.pmux);
gpio_init_mux(spi[dev].miso.pin, spi[dev].miso.pmux);
gpio_init_mux(spi[dev].mosi.pin, spi[dev].mosi.pmux);
/* pin pad mapping */
dipo = spi[dev].dipo;
dopo = spi[dev].dopo;
/* Disable spi to write config */
spi_dev->CTRLA.bit.ENABLE = 0;
while (spi_dev->SYNCBUSY.reg);
/* setup baud */
spi_dev->BAUD.bit.BAUD = (uint8_t) (((uint32_t) GCLK_REF) / (2 * f_baud) - 1); /* Syncronous mode*/
spi_dev->CTRLA.reg |= SERCOM_SPI_CTRLA_MODE(0x3) /* 0x2 = slave 0x3 = master */
| (SERCOM_SPI_CTRLA_DOPO(dopo))
| (SERCOM_SPI_CTRLA_DIPO(dipo))
| (cpha << SERCOM_SPI_CTRLA_CPHA_Pos)
| (cpol << SERCOM_SPI_CTRLA_CPOL_Pos);
while (spi_dev->SYNCBUSY.reg);
spi_dev->CTRLB.reg = (SERCOM_SPI_CTRLB_CHSIZE(0) | SERCOM_SPI_CTRLB_RXEN);
while(spi_dev->SYNCBUSY.reg);
spi_poweron(dev);
return 0;
}
int spi_init_slave(spi_t dev, spi_conf_t conf, char (*cb)(char))
{
/* TODO */
return 0;
}
void spi_transmission_begin(spi_t dev, char reset_val)
{
/* TODO*/
}
int spi_acquire(spi_t dev)
{
if (dev >= SPI_NUMOF) {
return -1;
}
mutex_lock(&locks[dev]);
return 0;
}
int spi_release(spi_t dev)
{
if (dev >= SPI_NUMOF) {
return -1;
}
mutex_unlock(&locks[dev]);
return 0;
}
int spi_transfer_byte(spi_t dev, char out, char *in)
{
SercomSpi* spi_dev = spi[dev].dev;
while (!spi_dev->INTFLAG.bit.DRE); /* while data register is not empty*/
spi_dev->DATA.bit.DATA = out;
if (in)
{
while (!spi_dev->INTFLAG.bit.RXC); /* while receive is not complete*/
*in = spi_dev->DATA.bit.DATA;
}
else
{
/* clear input byte even if we're not interested */
spi_dev->DATA.bit.DATA;
}
return 1;
}
void spi_poweron(spi_t dev)
{
SercomSpi* spi_dev = spi[dev].dev;
spi_dev->CTRLA.reg |= SERCOM_SPI_CTRLA_ENABLE;
while(spi_dev->SYNCBUSY.bit.ENABLE);
}
void spi_poweroff(spi_t dev)
{
SercomSpi* spi_dev = spi[dev].dev;
spi_dev->CTRLA.bit.ENABLE = 0;
while(spi_dev->SYNCBUSY.bit.ENABLE);
}
#endif /* SPI_0_EN || SPI_1_EN */