1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/drivers/hdc1000/hdc1000.c
2018-07-25 12:01:38 +02:00

163 lines
4.1 KiB
C

/*
* Copyright (C) 2014 PHYTEC Messtechnik GmbH
* 2017 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*
*/
/**
* @ingroup drivers_hdc1000
* @{
*
* @file
* @brief Driver for the TI HDC1000 Humidity and Temperature Sensor.
*
* @author Johann Fischer <j.fischer@phytec.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include <string.h>
#include "assert.h"
#include "xtimer.h"
#include "periph/i2c.h"
#include "hdc1000.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
#ifndef HDC1000_RENEW_INTERVAL
#define HDC1000_RENEW_INTERVAL (1000000ul)
#endif
static int16_t temp_cached, hum_cached;
static uint32_t last_read_time;
int hdc1000_init(hdc1000_t *dev, const hdc1000_params_t *params)
{
uint8_t reg[2];
uint16_t tmp;
/* write device descriptor */
memcpy(&dev->p, params, sizeof(hdc1000_params_t));
/* try if we can interact with the device by reading its manufacturer ID */
i2c_acquire(dev->p.i2c);
if (i2c_read_regs(dev->p.i2c, dev->p.addr,
HDC1000_MANUFACTURER_ID, reg, 2, 0) < 0) {
i2c_release(dev->p.i2c);
return HDC1000_NOBUS;
}
tmp = ((uint16_t)reg[0] << 8) | reg[1];
if (tmp != HDC1000_MID_VALUE) {
i2c_release(dev->p.i2c);
return HDC1000_NODEV;
}
/* set resolution for both sensors and sequence mode */
tmp = (HDC1000_SEQ_MOD | dev->p.res);
reg[0] = (tmp >> 8);
reg[1] = tmp;
if (i2c_write_regs(dev->p.i2c, dev->p.addr, HDC1000_CONFIG, reg, 2, 0) < 0) {
i2c_release(dev->p.i2c);
return HDC1000_NOBUS;
}
i2c_release(dev->p.i2c);
/* initial read for caching operation */
if (hdc1000_read(dev, &temp_cached, &hum_cached) != HDC1000_OK) {
return HDC1000_BUSERR;
}
last_read_time = xtimer_now_usec();
/* all set */
return HDC1000_OK;
}
int hdc1000_trigger_conversion(const hdc1000_t *dev)
{
int status = HDC1000_OK;
assert(dev);
i2c_acquire(dev->p.i2c);
/* Trigger the measurements by executing a write access
* to the address 0x00 (HDC1000_TEMPERATURE).
* Conversion Time is 6.50ms for each value for 14 bit resolution.
*/
if (i2c_write_byte(dev->p.i2c, dev->p.addr, HDC1000_TEMPERATURE, 0) < 0) {
status = HDC1000_BUSERR;
}
i2c_release(dev->p.i2c);
return status;
}
int hdc1000_get_results(const hdc1000_t *dev, int16_t *temp, int16_t *hum)
{
int status = HDC1000_OK;
assert(dev);
uint8_t buf[4];
/* first we read the RAW results from the device */
i2c_acquire(dev->p.i2c);
if (i2c_read_bytes(dev->p.i2c, dev->p.addr, buf, 4, 0) < 0) {
status = HDC1000_BUSERR;
}
i2c_release(dev->p.i2c);
if (status == HDC1000_OK) {
/* if all ok, we convert the values to their physical representation */
if (temp) {
uint16_t traw = ((uint16_t)buf[0] << 8) | buf[1];
*temp = (int16_t)((((int32_t)traw * 16500) >> 16) - 4000);
}
if (hum) {
uint16_t hraw = ((uint16_t)buf[2] << 8) | buf[3];
*hum = (int16_t)(((int32_t)hraw * 10000) >> 16);
}
}
return status;
}
int hdc1000_read(const hdc1000_t *dev, int16_t *temp, int16_t *hum)
{
if (hdc1000_trigger_conversion(dev) != HDC1000_OK) {
return HDC1000_BUSERR;
}
xtimer_usleep(HDC1000_CONVERSION_TIME);
return hdc1000_get_results(dev, temp, hum);
}
int hdc1000_read_cached(const hdc1000_t *dev, int16_t *temp, int16_t *hum)
{
uint32_t now = xtimer_now_usec();
/* check if readings are outdated */
if (now - last_read_time > HDC1000_RENEW_INTERVAL) {
/* update last_read_time */
if (hdc1000_read(dev, &temp_cached, &hum_cached) != HDC1000_OK) {
return HDC1000_BUSERR;
}
last_read_time = now;
}
if (temp) {
*temp = temp_cached;
}
if (hum) {
*hum = hum_cached;
}
return HDC1000_OK;
}