1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/stm32/periph/spi.c

452 lines
12 KiB
C

/*
* Copyright (C) 2014 Hamburg University of Applied Sciences
* 2014-2017 Freie Universität Berlin
* 2016-2017 OTA keys S.A.
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_stm32
* @ingroup drivers_periph_spi
* @{
*
* @file
* @brief Low-level SPI driver implementation
*
* @author Peter Kietzmann <peter.kietzmann@haw-hamburg.de>
* @author Fabian Nack <nack@inf.fu-berlin.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Vincent Dupont <vincent@otakeys.com>
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
*
* @}
*/
#include <assert.h>
#include "compiler_hints.h"
#include "mutex.h"
#include "periph/gpio.h"
#include "periph/spi.h"
#include "pm_layered.h"
#define ENABLE_DEBUG 0
#include "debug.h"
/**
* @brief Number of bits to shift the BR value in the CR1 register
*/
#define BR_SHIFT (3U)
#define BR_MAX (7U)
#ifdef SPI_CR2_FRXTH
/* configure SPI for 8-bit data width */
#define SPI_CR2_SETTINGS (SPI_CR2_FRXTH |\
SPI_CR2_DS_0 |\
SPI_CR2_DS_1 |\
SPI_CR2_DS_2)
#else
#define SPI_CR2_SETTINGS 0
#endif
/**
* @brief Allocate one lock per SPI device
*/
static mutex_t locks[SPI_NUMOF];
/**
* @brief Clock configuration cache
*/
static uint32_t clocks[SPI_NUMOF];
/**
* @brief Clock prescaler cache
*/
static uint8_t prescalers[SPI_NUMOF];
static inline SPI_TypeDef *dev(spi_t bus)
{
return spi_config[bus].dev;
}
#ifdef MODULE_PERIPH_DMA
static inline bool _use_dma(const spi_conf_t *conf)
{
return conf->tx_dma != DMA_STREAM_UNDEF && conf->rx_dma != DMA_STREAM_UNDEF;
}
#endif
static uint8_t _get_prescaler(const spi_conf_t *conf, uint32_t clock)
{
uint32_t bus_clock = periph_apb_clk(conf->apbbus);
uint8_t prescaler = 0;
uint32_t prescaled_clock = bus_clock >> 1;
const uint8_t prescaler_max = SPI_CR1_BR_Msk >> SPI_CR1_BR_Pos;
for (; (prescaled_clock > clock) && (prescaler < prescaler_max); prescaler++) {
prescaled_clock >>= 1;
}
/* If the callers asks for an SPI frequency of at most x, bad things will
* happen if this cannot be met. So let's have a blown assertion
* rather than runtime failures that require a logic analyzer to
* debug. */
assume(prescaled_clock <= clock);
return prescaler;
}
void spi_init(spi_t bus)
{
assume(bus < SPI_NUMOF);
/* initialize device lock (as locked, spi_init_pins() will unlock it */
locks[bus] = (mutex_t)MUTEX_INIT_LOCKED;
/* trigger pin initialization */
spi_init_pins(bus);
periph_clk_en(spi_config[bus].apbbus, spi_config[bus].rccmask);
/* reset configuration */
dev(bus)->CR1 = 0;
#ifdef SPI_I2SCFGR_I2SE
dev(bus)->I2SCFGR = 0;
#endif
dev(bus)->CR2 = SPI_CR2_SETTINGS;
periph_clk_dis(spi_config[bus].apbbus, spi_config[bus].rccmask);
}
void spi_init_pins(spi_t bus)
{
assume(bus < SPI_NUMOF);
#ifdef CPU_FAM_STM32F1
if (gpio_is_valid(spi_config[bus].sclk_pin)) {
gpio_init_af(spi_config[bus].sclk_pin, GPIO_AF_OUT_PP);
}
if (gpio_is_valid(spi_config[bus].mosi_pin)) {
gpio_init_af(spi_config[bus].mosi_pin, GPIO_AF_OUT_PP);
}
if (gpio_is_valid(spi_config[bus].miso_pin)) {
gpio_init(spi_config[bus].miso_pin, GPIO_IN);
}
#else
if (gpio_is_valid(spi_config[bus].mosi_pin)) {
gpio_init(spi_config[bus].mosi_pin, GPIO_OUT);
gpio_init_af(spi_config[bus].mosi_pin, spi_config[bus].mosi_af);
}
if (gpio_is_valid(spi_config[bus].miso_pin)) {
gpio_init(spi_config[bus].miso_pin, GPIO_IN);
gpio_init_af(spi_config[bus].miso_pin, spi_config[bus].miso_af);
}
if (gpio_is_valid(spi_config[bus].sclk_pin)) {
gpio_init(spi_config[bus].sclk_pin, GPIO_OUT);
gpio_init_af(spi_config[bus].sclk_pin, spi_config[bus].sclk_af);
}
#endif
mutex_unlock(&locks[bus]);
}
void spi_deinit_pins(spi_t bus)
{
assume(bus < SPI_NUMOF);
mutex_lock(&locks[bus]);
if (gpio_is_valid(spi_config[bus].sclk_pin)) {
gpio_init(spi_config[bus].sclk_pin, GPIO_IN);
}
if (gpio_is_valid(spi_config[bus].mosi_pin)) {
gpio_init(spi_config[bus].mosi_pin, GPIO_IN);
}
if (gpio_is_valid(spi_config[bus].miso_pin)) {
gpio_init(spi_config[bus].miso_pin, GPIO_IN);
}
}
gpio_t spi_pin_miso(spi_t bus)
{
assume(bus < SPI_NUMOF);
return spi_config[bus].miso_pin;
}
gpio_t spi_pin_mosi(spi_t bus)
{
assume(bus < SPI_NUMOF);
return spi_config[bus].mosi_pin;
}
gpio_t spi_pin_clk(spi_t bus)
{
assume(bus < SPI_NUMOF);
return spi_config[bus].sclk_pin;
}
int spi_init_cs(spi_t bus, spi_cs_t cs)
{
if (bus >= SPI_NUMOF) {
return SPI_NODEV;
}
if (!gpio_is_valid(cs) ||
(((cs & SPI_HWCS_MASK) == SPI_HWCS_MASK) && (cs & ~(SPI_HWCS_MASK)))) {
return SPI_NOCS;
}
if (cs == SPI_HWCS_MASK) {
if (!gpio_is_valid(spi_config[bus].cs_pin)) {
return SPI_NOCS;
}
#ifdef CPU_FAM_STM32F1
gpio_init_af(spi_config[bus].cs_pin, GPIO_AF_OUT_PP);
#else
gpio_init(spi_config[bus].cs_pin, GPIO_OUT);
gpio_init_af(spi_config[bus].cs_pin, spi_config[bus].cs_af);
#endif
}
else {
gpio_init((gpio_t)cs, GPIO_OUT);
gpio_set((gpio_t)cs);
}
return SPI_OK;
}
#ifdef MODULE_PERIPH_SPI_GPIO_MODE
int spi_init_with_gpio_mode(spi_t bus, const spi_gpio_mode_t* mode)
{
assume(bus < SPI_NUMOF);
int ret = 0;
#ifdef CPU_FAM_STM32F1
/* This has no effect on STM32F1 */
return ret;
#else
if (gpio_is_valid(spi_config[bus].mosi_pin)) {
ret += gpio_init(spi_config[bus].mosi_pin, mode->mosi);
gpio_init_af(spi_config[bus].mosi_pin, spi_config[bus].mosi_af);
}
if (gpio_is_valid(spi_config[bus].miso_pin)) {
ret += gpio_init(spi_config[bus].miso_pin, mode->miso);
gpio_init_af(spi_config[bus].miso_pin, spi_config[bus].miso_af);
}
if (gpio_is_valid(spi_config[bus].sclk_pin)) {
ret += gpio_init(spi_config[bus].sclk_pin, mode->sclk);
gpio_init_af(spi_config[bus].sclk_pin, spi_config[bus].sclk_af);
}
return ret;
#endif
}
#endif
void spi_acquire(spi_t bus, spi_cs_t cs, spi_mode_t mode, spi_clk_t clk)
{
assume((unsigned)bus < SPI_NUMOF);
/* lock bus */
mutex_lock(&locks[bus]);
#ifdef STM32_PM_STOP
/* block STOP mode */
pm_block(STM32_PM_STOP);
#endif
/* enable SPI device clock */
periph_clk_en(spi_config[bus].apbbus, spi_config[bus].rccmask);
/* enable device */
if (clk != clocks[bus]) {
prescalers[bus] = _get_prescaler(&spi_config[bus], clk);
clocks[bus] = clk;
}
uint8_t br = prescalers[bus];
DEBUG("[spi] acquire: requested clock: %" PRIu32
" Hz, resulting clock: %" PRIu32 " Hz, BR prescaler: %u\n",
clk,
periph_apb_clk(spi_config[bus].apbbus) >> (br + 1),
(unsigned)br);
uint16_t cr1 = ((br << BR_SHIFT) | mode | SPI_CR1_MSTR | SPI_CR1_SPE);
/* Settings to add to CR2 in addition to SPI_CR2_SETTINGS */
uint16_t cr2 = SPI_CR2_SETTINGS;
if (cs != SPI_HWCS_MASK) {
cr1 |= (SPI_CR1_SSM | SPI_CR1_SSI);
}
else {
cr2 = (SPI_CR2_SSOE);
}
#ifdef MODULE_PERIPH_DMA
if (_use_dma(&spi_config[bus])) {
cr2 |= SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN;
dma_acquire(spi_config[bus].tx_dma);
dma_setup(spi_config[bus].tx_dma,
spi_config[bus].tx_dma_chan,
(uint32_t*)&(dev(bus)->DR),
DMA_MEM_TO_PERIPH,
DMA_DATA_WIDTH_BYTE,
0);
dma_acquire(spi_config[bus].rx_dma);
dma_setup(spi_config[bus].rx_dma,
spi_config[bus].rx_dma_chan,
(uint32_t*)&(dev(bus)->DR),
DMA_PERIPH_TO_MEM,
DMA_DATA_WIDTH_BYTE,
0);
}
#endif
dev(bus)->CR1 = cr1;
dev(bus)->CR2 = cr2;
}
void spi_release(spi_t bus)
{
#ifdef MODULE_PERIPH_DMA
if (_use_dma(&spi_config[bus])) {
dma_release(spi_config[bus].tx_dma);
dma_release(spi_config[bus].rx_dma);
}
#endif
/* disable device and release lock */
dev(bus)->CR1 = 0;
dev(bus)->CR2 = SPI_CR2_SETTINGS; /* Clear the DMA and SSOE flags */
periph_clk_dis(spi_config[bus].apbbus, spi_config[bus].rccmask);
#ifdef STM32_PM_STOP
/* unblock STOP mode */
pm_unblock(STM32_PM_STOP);
#endif
mutex_unlock(&locks[bus]);
}
static inline void _wait_for_end(spi_t bus)
{
/* make sure the transfer is completed before continuing, see reference
* manual(s) -> section 'Disabling the SPI' */
while (!(dev(bus)->SR & SPI_SR_TXE)) {}
while (dev(bus)->SR & SPI_SR_BSY) {}
}
#ifdef MODULE_PERIPH_DMA
static void _transfer_dma(spi_t bus, const void *out, void *in, size_t len)
{
uint8_t tmp = 0;
if (out) {
dma_prepare(spi_config[bus].tx_dma, (void*)out, len, 1);
}
else {
dma_prepare(spi_config[bus].tx_dma, &tmp, len, 0);
}
if (in) {
dma_prepare(spi_config[bus].rx_dma, in, len, 1);
}
else {
dma_prepare(spi_config[bus].rx_dma, &tmp, len, 0);
}
/* Start RX first to ensure it is active before the SPI transfers are
* triggered by the TX dma activity */
dma_start(spi_config[bus].rx_dma);
dma_start(spi_config[bus].tx_dma);
dma_wait(spi_config[bus].rx_dma);
dma_wait(spi_config[bus].tx_dma);
#ifdef DMA_CCR_EN
dma_stop(spi_config[bus].rx_dma);
dma_stop(spi_config[bus].tx_dma);
#endif
_wait_for_end(bus);
}
#endif
static void _transfer_no_dma(spi_t bus, const void *out, void *in, size_t len)
{
const uint8_t *outbuf = out;
uint8_t *inbuf = in;
/* we need to recast the data register to uint_8 to force 8-bit access */
volatile uint8_t *DR = (volatile uint8_t*)&(dev(bus)->DR);
/* transfer data, use shortpath if only sending data */
if (!inbuf) {
for (size_t i = 0; i < len; i++) {
while (!(dev(bus)->SR & SPI_SR_TXE)) {}
*DR = outbuf[i];
}
}
else if (!outbuf) {
for (size_t i = 0; i < len; i++) {
while (!(dev(bus)->SR & SPI_SR_TXE)) { /* busy wait */ }
*DR = 0;
while (!(dev(bus)->SR & SPI_SR_RXNE)) { /* busy wait */ }
inbuf[i] = *DR;
}
}
else {
for (size_t i = 0; i < len; i++) {
while (!(dev(bus)->SR & SPI_SR_TXE)) { /* busy wait */ }
*DR = outbuf[i];
while (!(dev(bus)->SR & SPI_SR_RXNE)) { /* busy wait */ }
inbuf[i] = *DR;
}
}
/* wait until everything is finished and empty the receive buffer */
while (!(dev(bus)->SR & SPI_SR_TXE)) {}
while (dev(bus)->SR & SPI_SR_BSY) {}
while (dev(bus)->SR & SPI_SR_RXNE) {
/* make sure to "read" any data, so the RXNE is indeed clear.
* Otherwise we risk reading stale data in the next transfer */
(void)*DR;
}
_wait_for_end(bus);
}
void spi_transfer_bytes(spi_t bus, spi_cs_t cs, bool cont,
const void *out, void *in, size_t len)
{
/* make sure at least one input or one output buffer is given */
assume(out || in);
/* active the given chip select line */
if ((cs != SPI_HWCS_MASK) && gpio_is_valid(cs)) {
gpio_clear((gpio_t)cs);
}
else {
dev(bus)->CR2 |= SPI_CR2_SSOE;
}
#ifdef MODULE_PERIPH_DMA
if (_use_dma(&spi_config[bus]) && len > CONFIG_SPI_DMA_THRESHOLD_BYTES) {
_transfer_dma(bus, out, in, len);
}
else {
#endif
_transfer_no_dma(bus, out, in, len);
#ifdef MODULE_PERIPH_DMA
}
#endif
/* release the chip select if not specified differently */
if ((!cont) && gpio_is_valid(cs)) {
if (cs != SPI_HWCS_MASK) {
gpio_set((gpio_t)cs);
}
else {
dev(bus)->CR2 &= ~(SPI_CR2_SSOE);
}
}
}