1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/stm32/periph/flashpage.c
2024-01-29 14:44:10 -05:00

370 lines
12 KiB
C

/*
* Copyright (C) 2016 Freie Universität Berlin
* 2018 Inria
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_stm32
* @ingroup drivers_periph_flashpage
* @{
*
* @file
* @brief Low-level flash page driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Francisco Acosta <francisco.acosta@inria.fr>
* @author Alexandre Abadie <alexandre.abadie@inria.fr>
*
* @}
*/
#include "cpu.h"
#include "stmclk.h"
#include "assert.h"
#include "periph/flashpage.h"
#define ENABLE_DEBUG 0
#include "debug.h"
#if defined(CPU_FAM_STM32L0) || defined(CPU_FAM_STM32L1)
/* Program memory unlock keys */
#define FLASH_PRGKEY1 ((uint32_t)0x8C9DAEBF)
#define FLASH_PRGKEY2 ((uint32_t)0x13141516)
#define CNTRL_REG (FLASH->PECR)
#define CNTRL_REG_LOCK (FLASH_PECR_PELOCK)
#define FLASH_CR_PER (FLASH_PECR_ERASE | FLASH_PECR_PROG)
#elif defined(CPU_FAM_STM32L5)
#define CNTRL_REG (FLASH->NSCR)
#define CNTRL_REG_LOCK (FLASH_NSCR_NSLOCK)
#define FLASH_CR_PNB (FLASH_NSCR_NSPNB)
#define FLASH_CR_PNB_Pos (FLASH_NSCR_NSPNB_Pos)
#define FLASH_CR_STRT (FLASH_NSCR_NSSTRT)
#define FLASH_CR_PER (FLASH_NSCR_NSPER)
#define FLASH_CR_BKER (FLASH_NSCR_NSBKER)
#define FLASH_CR_PG (FLASH_NSCR_NSPG)
#elif defined(CPU_FAM_STM32U5)
#define CNTRL_REG (FLASH->NSCR)
#define CNTRL_REG_LOCK (FLASH_NSCR_LOCK)
#define FLASH_CR_PNB (FLASH_NSCR_PNB)
#define FLASH_CR_PNB_Pos (FLASH_NSCR_PNB_Pos)
#define FLASH_CR_STRT (FLASH_NSCR_STRT)
#define FLASH_CR_PER (FLASH_NSCR_PER)
#define FLASH_CR_BKER (FLASH_NSCR_BKER)
#define FLASH_CR_PG (FLASH_NSCR_PG)
#elif defined(CPU_FAM_STM32F2) || defined(CPU_FAM_STM32F4) || \
defined(CPU_FAM_STM32F7)
#define FLASHPAGE_DIV (4U)
#define FLASH_CR_PER (FLASH_CR_SER)
#define FLASH_CR_PNB (FLASH_CR_SNB)
#define FLASH_CR_PNB_Pos (FLASH_CR_SNB_Pos)
#define CNTRL_REG (FLASH->CR)
#else
#define CNTRL_REG (FLASH->CR)
#define CNTRL_REG_LOCK (FLASH_CR_LOCK)
#endif
extern void _lock(void);
extern void _unlock(void);
extern void _wait_for_pending_operations(void);
#if defined(CPU_FAM_STM32G4) || defined(CPU_FAM_STM32L5) || \
defined(CPU_FAM_STM32U5)
#define MAX_PAGES_PER_BANK (128)
#else /* CPU_FAM_STM32L4 */
#define MAX_PAGES_PER_BANK (256)
#endif
static void _unlock_flash(void)
{
_unlock();
#if defined(CPU_FAM_STM32L0) || defined(CPU_FAM_STM32L1)
DEBUG("[flashpage] unlocking the flash program memory\n");
if (!(CNTRL_REG & CNTRL_REG_LOCK)) {
if (CNTRL_REG & FLASH_PECR_PRGLOCK) {
DEBUG("[flashpage] setting the program memory unlock keys\n");
FLASH->PRGKEYR = FLASH_PRGKEY1;
FLASH->PRGKEYR = FLASH_PRGKEY2;
}
}
#endif
}
static void _erase_page(void *page_addr)
{
#if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32F1) || \
defined(CPU_FAM_STM32F3)
uint32_t hsi_state = (RCC->CR & RCC_CR_HSION);
/* the internal RC oscillator (HSI) must be enabled */
stmclk_enable_hsi();
#endif
/* unlock the flash module */
_unlock_flash();
/* make sure no flash operation is ongoing */
_wait_for_pending_operations();
/* set page erase bit and program page address */
DEBUG("[flashpage] erase: setting the erase bit\n");
CNTRL_REG |= FLASH_CR_PER;
DEBUG("address to erase: %p\n", page_addr);
#if defined(CPU_FAM_STM32L0) || defined(CPU_FAM_STM32L1)
DEBUG("[flashpage] erase: trigger the page erase\n");
*(uint32_t *)page_addr = 0;
#elif defined(CPU_FAM_STM32L4) || defined(CPU_FAM_STM32WB) || \
defined(CPU_FAM_STM32G4) || defined(CPU_FAM_STM32G0) || \
defined(CPU_FAM_STM32L5) || defined(CPU_FAM_STM32F2) || \
defined(CPU_FAM_STM32F4) || defined(CPU_FAM_STM32F7) || \
defined(CPU_FAM_STM32U5) || defined(CPU_FAM_STM32WL) || \
defined(CPU_FAM_STM32C0)
DEBUG("[flashpage] erase: setting the page address\n");
uint8_t pn;
#if (FLASHPAGE_NUMOF <= MAX_PAGES_PER_BANK) || defined(CPU_FAM_STM32WB) || \
defined(CPU_FAM_STM32WL)
pn = (uint8_t)flashpage_page(page_addr);
#else
uint16_t page = flashpage_page(page_addr);
if (page > MAX_PAGES_PER_BANK - 1) {
CNTRL_REG |= FLASH_CR_BKER;
}
else {
CNTRL_REG &= ~FLASH_CR_BKER;
}
pn = (uint8_t)page;
#endif
CNTRL_REG &= ~FLASH_CR_PNB;
#if FLASHPAGE_DUAL_BANK
if (pn > (FLASHPAGE_NUMOF / 2 - 1)) {
pn = pn - (FLASHPAGE_NUMOF / 2);
CNTRL_REG |= FLASH_CR_SNB_4 | (uint32_t)(pn << FLASH_CR_PNB_Pos);
}
else {
CNTRL_REG |= (uint32_t)(pn << FLASH_CR_PNB_Pos);
}
#else
CNTRL_REG |= (uint32_t)(pn << FLASH_CR_PNB_Pos);
#endif
CNTRL_REG |= FLASH_CR_STRT;
DEBUG("[flashpage] erase: the page address is set and started\n");
#else /* CPU_FAM_STM32F0 || CPU_FAM_STM32F1 || CPU_FAM_STM32F3 */
DEBUG("[flashpage] erase: setting the page address\n");
FLASH->AR = (uint32_t)page_addr;
/* trigger the page erase and wait for it to be finished */
DEBUG("[flashpage] erase: trigger the page erase\n");
CNTRL_REG |= FLASH_CR_STRT;
#endif
/* wait as long as device is busy */
_wait_for_pending_operations();
#ifdef FLASH_ACR_DCEN /* Flush the data cache after page erase */
if (FLASH->ACR & FLASH_ACR_DCEN) {
FLASH->ACR &= ~FLASH_ACR_DCEN;
FLASH->ACR |= FLASH_ACR_DCRST;
FLASH->ACR |= FLASH_ACR_DCEN;
}
#endif
#ifdef FLASH_ACR_ICEN /* Flush the instruction cache after page erase */
if (FLASH->ACR & FLASH_ACR_ICEN) {
FLASH->ACR &= ~FLASH_ACR_ICEN;
FLASH->ACR |= FLASH_ACR_ICRST;
FLASH->ACR |= FLASH_ACR_ICEN;
}
#endif
DEBUG("[flashpage] erase: resetting the page erase bit\n");
CNTRL_REG &= ~(FLASH_CR_PER);
#ifdef FLASH_CR_PNB
/* reset PNB bit (if the register settings exist) */
CNTRL_REG &= ~(FLASH_CR_PNB);
#endif
/* lock the flash module again */
_lock();
#if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32F1) || \
defined(CPU_FAM_STM32F3)
/* restore the HSI state */
if (!hsi_state) {
stmclk_disable_hsi();
}
#endif
}
void flashpage_erase(unsigned page)
{
assert(page < (int)FLASHPAGE_NUMOF);
/* ensure there is no attempt to write to CPU2 protected area */
#if defined(CPU_FAM_STM32WB) || (defined(CPU_FAM_STM32WL) && \
!defined(CPU_LINE_STM32WLE5xx))
assert(page < (int)(FLASH->SFR & FLASH_SFR_SFSA));
#endif
void *page_addr = flashpage_addr(page);
/* ERASE sequence */
_erase_page(page_addr);
}
void flashpage_write(void *target_addr, const void *data, size_t len)
{
/* assert multiples of FLASHPAGE_WRITE_BLOCK_SIZE are written and no less of
that length. */
assert(!(len % FLASHPAGE_WRITE_BLOCK_SIZE));
/* ensure writes are aligned */
assert(!(((unsigned)target_addr % FLASHPAGE_WRITE_BLOCK_ALIGNMENT) ||
((unsigned)data % FLASHPAGE_WRITE_BLOCK_ALIGNMENT)));
/* ensure the length doesn't exceed the actual flash size */
assert(((uintptr_t)(target_addr) + len) <
(uintptr_t)flashpage_addr(FLASHPAGE_NUMOF + 1));
stm32_flashpage_block_t *dst = target_addr;
const stm32_flashpage_block_t *data_addr = data;
#if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32F1) || \
defined(CPU_FAM_STM32F3)
uint32_t hsi_state = (RCC->CR & RCC_CR_HSION);
/* the internal RC oscillator (HSI) must be enabled */
stmclk_enable_hsi();
#endif
#ifdef FLASH_ACR_DCEN
/* Disable the data cache during page writes */
bool data_cache = FLASH->ACR & FLASH_ACR_DCEN;
if (data_cache) {
FLASH->ACR &= ~FLASH_ACR_DCEN;
}
#endif
#ifdef FLASH_ACR_ICEN
/* Disable the instruction cache during page writes */
bool instruction_cache = FLASH->ACR & FLASH_ACR_ICEN;
if (instruction_cache) {
FLASH->ACR &= ~FLASH_ACR_ICEN;
#if defined(CPU_FAM_STM32WL)
/* Reset the instruction cache after it has been disabled. This
operation is required as the cpu stalls after a flash write operation
for unknown reasons in STM32WL55JC */
FLASH->ACR |= FLASH_ACR_ICRST;
#endif
}
#endif
/* unlock the flash module */
_unlock_flash();
#ifdef FLASH_CR_PSIZE_1
CNTRL_REG |= FLASH_CR_PSIZE_1; /* Word size parallelism */
#endif
/* make sure no flash operation is ongoing */
_wait_for_pending_operations();
DEBUG("[flashpage_raw] write: now writing the data\n");
#if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32F1) || \
defined(CPU_FAM_STM32F3) || defined(CPU_FAM_STM32L4) || \
defined(CPU_FAM_STM32WB) || defined(CPU_FAM_STM32G4) || \
defined(CPU_FAM_STM32G0) || defined(CPU_FAM_STM32L5) || \
defined(CPU_FAM_STM32F2) || defined(CPU_FAM_STM32F4) || \
defined(CPU_FAM_STM32F7) || defined(CPU_FAM_STM32U5) || \
defined(CPU_FAM_STM32WL) || defined(CPU_FAM_STM32C0)
/* set PG bit and program page to flash */
CNTRL_REG |= FLASH_CR_PG;
#endif
for (size_t i = 0; i < (len / sizeof(stm32_flashpage_block_t)); i++) {
DEBUG("[flashpage_raw] writing %c to %p\n", (char)data_addr[i], dst);
*dst++ = data_addr[i];
#if defined(CPU_FAM_STM32F7)
__DMB();
#endif
/* wait as long as device is busy */
_wait_for_pending_operations();
}
/* clear program bit again */
#if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32F1) || \
defined(CPU_FAM_STM32F3) || defined(CPU_FAM_STM32L4) || \
defined(CPU_FAM_STM32WB) || defined(CPU_FAM_STM32G4) || \
defined(CPU_FAM_STM32G0) || defined(CPU_FAM_STM32L5) || \
defined(CPU_FAM_STM32F2) || defined(CPU_FAM_STM32F4) || \
defined(CPU_FAM_STM32F7) || defined(CPU_FAM_STM32U5) || \
defined(CPU_FAM_STM32WL) || defined(CPU_FAM_STM32C0)
CNTRL_REG &= ~(FLASH_CR_PG);
#endif
DEBUG("[flashpage_raw] write: done writing data\n");
/* lock the flash module again */
_lock();
#ifdef FLASH_ACR_DCEN
/* Enable the data cache if it was enabled before. Always reset it */
FLASH->ACR |= FLASH_ACR_DCRST;
if (data_cache) {
FLASH->ACR |= FLASH_ACR_DCEN;
}
#endif
#ifdef FLASH_ACR_ICEN
/* Enable the instruction cache if it was enabled before. Always reset it */
FLASH->ACR |= FLASH_ACR_ICRST;
if (instruction_cache) {
FLASH->ACR |= FLASH_ACR_ICEN;
}
#endif
#if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32F1) || \
defined(CPU_FAM_STM32F3)
/* restore the HSI state */
if (!hsi_state) {
stmclk_disable_hsi();
}
#endif
}
#if defined(CPU_FAM_STM32F2) || defined(CPU_FAM_STM32F4) || \
defined(CPU_FAM_STM32F7)
size_t flashpage_size(unsigned page)
{
if (page < 4) {
return FLASHPAGE_MIN_SECTOR_SIZE;
}
else if (page == 4) {
return 4 * FLASHPAGE_MIN_SECTOR_SIZE;
}
else {
return 8 * FLASHPAGE_MIN_SECTOR_SIZE;
}
}
unsigned flashpage_page(const void *addr)
{
/* Calculates the flashpage number based on the address for the
* non-homogeneous flashpage stm32 series.
* These all follow the same pattern of 4 sectors of base size, 1 sector of
* 4 times the base size and the rest of the pages are 8 times the base
* size. Here we calculate the page number as if all pages are of base size
* and then compensate for the larger sectors */
unsigned page = (((intptr_t)addr - CPU_FLASH_BASE) /
FLASHPAGE_MIN_SECTOR_SIZE);
/* check if beyond the 4 base sectors + the 4 * base size sector */
if (page > 7) {
/* Divide by 8 and compensate for the initial 5 sectors */
page = (page / 8) + 4;
}
/* If the page number is between 4 and 7 (inclusive), the address is in the
* single 4 * base size sector */
else if (page > 3) {
page = 4;
}
return page;
}
#endif