1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/atmega_common/periph/uart.c
Gerson Fernando Budke 783afbc666 cpu/avr8_common: Add AVR8_ISR macro
The current ISR implementation for AVR8 requires use of
avr8_[enter/exit]_isr pair which add some boilerplate on code.
This add AVR8_ISR which clean-up the code and make it simpler
and hides any schedule detail from the user perspective.

This is a preparation for future scheduling and irq optimizations.

Signed-off-by: Gerson Fernando Budke <nandojve@gmail.com>
2023-07-05 20:00:19 +02:00

259 lines
6.9 KiB
C

/*
* Copyright (C) 2014 Freie Universität Berlin, Hinnerk van Bruinehsen
* 2017 Thomas Perrot <thomas.perrot@tupi.fr>
* 2023 Hugues Larrive
* 2023 Gerson Fernando Budke
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_atmega_common
* @ingroup drivers_periph_uart
* @{
*
* @file
* @brief Low-level UART driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Hinnerk van Bruinehsen <h.v.bruinehsen@fu-berlin.de>
* @author Thomas Perrot <thomas.perrot@tupi.fr>
* @author Hugues Larrive <hugues.larrive@pm.me>
* @author Gerson Fernando Budke <nandojve@gmail.com>
*
*
* Support static BAUD rate calculation using STDIO_UART_BAUDRATE.
* Set STDIO_UART_BAUDRATE to the desired baud rate and pass it as a -D argument
* at compilation time (e.g. in the boards Makefile.include file).
* UART_BAUD_TOL can be set to guarantee a BAUD rate tolerance at compile time or
* to switch to double speed transmission (U2X) to achieve a lower tolerance.
* At runtime, this tolerance is not guaranteed to be met.
* However, an error message will be displayed at compile time.
*
* @}
*/
#include "cpu.h"
#include "irq.h"
#include "sched.h"
#include "thread.h"
#include "periph/uart.h"
/**
* @brief Maximum percentage error in calculated baud before switching to
* double speed transmission (U2X)
*
* Takes whole numbers from 0 to 100, inclusive, with a default of 2.
*/
#if defined(UART_BAUD_TOL)
/* BAUD_TOL is defined here as it is used by the setbaud.h utility */
#define BAUD_TOL UART_BAUD_TOL
#else
#define BAUD_TOL 2
#endif
#if defined(STDIO_UART_BAUDRATE)
/* BAUD and F_CPU are required by setbaud.h to calculated BRR */
#define BAUD STDIO_UART_BAUDRATE
#define F_CPU CLOCK_CORECLOCK
#include <util/setbaud.h>
#endif
/**
* @brief Configured device map
*/
static mega_uart_t *dev[] = {
#ifdef UART_0
UART_0,
#endif
#ifdef UART_1
UART_1,
#endif
#ifdef UART_2
UART_2,
#endif
#ifdef UART_3
UART_3
#endif
};
/**
* @brief Allocate memory to store the callback functions.
*/
static uart_isr_ctx_t isr_ctx[UART_NUMOF];
static void _update_brr(uart_t uart, uint16_t brr, bool double_speed)
{
#if defined(UCSR0A) || defined(UCSR1A)
dev[uart]->BRR = brr;
#elif defined(UCSRA) /* atmega8 */
/* on atmega8 BRRH is shared with CSRC */
dev[uart]->CSRC = (brr >> 8);
dev[uart]->BRRL = (uint8_t)(brr & 0x00ff);
#endif
if (double_speed) {
#if defined(U2X) /* atmega8 */
dev[uart]->CSRA |= (1 << U2X);
#elif defined(U2X0)
dev[uart]->CSRA |= (1 << U2X0);
#elif defined(U2X1) /* atmega32u4 */
dev[uart]->CSRA |= (1 << U2X1);
#endif
}
}
static void _set_brr(uart_t uart, uint32_t baudrate)
{
uint16_t brr;
#if defined(STDIO_UART_BAUDRATE)
/* UBRR_VALUE and USE_2X are statically computed from <util/setbaud.h> */
if (baudrate == STDIO_UART_BAUDRATE) {
_update_brr(uart, UBRR_VALUE, USE_2X);
return;
}
#endif
/* brr calculation is different from the datasheet to provide better rounding */
#if defined(UART_DOUBLE_SPEED)
brr = (CLOCK_CORECLOCK + 4UL * baudrate) / (8UL * baudrate) - 1UL;
_update_brr(uart, brr, true);
#else
brr = (CLOCK_CORECLOCK + 8UL * baudrate) / (16UL * baudrate) - 1UL;
_update_brr(uart, brr, false);
#endif
}
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
{
/* make sure the given device is valid */
if (uart >= UART_NUMOF) {
return UART_NODEV;
}
uint16_t count = UINT16_MAX;
while (avr8_is_uart_tx_pending() && count--) {}
/* register interrupt context */
isr_ctx[uart].rx_cb = rx_cb;
isr_ctx[uart].arg = arg;
/* disable and reset UART */
#ifdef UCSR1D /* 32u4 */
dev[uart]->CSRD = 0;
#endif
dev[uart]->CSRB = 0;
dev[uart]->CSRA = 0;
/* configure UART to 8N1 mode */
#if defined(UCSZ0) && defined(UCSZ1) /* atmega8 */
dev[uart]->CSRC = (1 << UCSZ0) | (1 << UCSZ1);
#elif defined(UCSZ00) && defined(UCSZ01)
dev[uart]->CSRC = (1 << UCSZ00) | (1 << UCSZ01);
#elif defined(UCSZ10) && defined(UCSZ11) /* 32u4 */
dev[uart]->CSRC = (1 << UCSZ10) | (1 << UCSZ11);
#endif
/* set clock divider */
_set_brr(uart, baudrate);
/* enable RX and TX and their respective interrupt */
if (rx_cb) {
#if defined(RXCIE) /* atmega8 */
dev[uart]->CSRB = ((1 << RXCIE) | (1 << TXCIE) | (1 << RXEN) | (1 << TXEN));
#elif defined(RXCIE0)
dev[uart]->CSRB = ((1 << RXCIE0) | (1 << TXCIE0) | (1 << RXEN0) | (1 << TXEN0));
#elif defined(RXCIE1) /* 32u4 */
dev[uart]->CSRB = ((1 << RXCIE1) | (1 << TXCIE1) | (1 << RXEN1) | (1 << TXEN1));
#endif
}
else {
#if defined(TXEN) /* atmega8 */
dev[uart]->CSRB = ((1 << TXEN) | (1 << TXCIE));
#elif defined(TXEN0)
dev[uart]->CSRB = ((1 << TXEN0) | (1 << TXCIE0));
#elif defined(TXEN1) /* 32u4 */
dev[uart]->CSRB = ((1 << TXEN1) | (1 << TXCIE1));
#endif
}
return UART_OK;
}
void uart_write(uart_t uart, const uint8_t *data, size_t len)
{
for (size_t i = 0; i < len; i++) {
#if defined(UDRE) /* atmega8 */
while (!(dev[uart]->CSRA & (1 << UDRE))) {};
#elif defined(UDRE0)
while (!(dev[uart]->CSRA & (1 << UDRE0))) {}
#elif defined(UDRE1) /* 32u4 */
while (!(dev[uart]->CSRA & (1 << UDRE1))) {};
#endif
/* start of TX won't finish until no data in UDRn and transmit shift
register is empty */
unsigned long state = irq_disable();
avr8_uart_tx_set_pending(uart);
irq_restore(state);
dev[uart]->DR = data[i];
}
}
void uart_poweron(uart_t uart)
{
(void)uart;
/* not implemented (yet) */
}
void uart_poweroff(uart_t uart)
{
(void)uart;
/* not implemented (yet) */
}
static inline void _rx_isr_handler(int num)
{
isr_ctx[num].rx_cb(isr_ctx[num].arg, dev[num]->DR);
}
static inline void _tx_isr_handler(int num)
{
/* entire frame in the Transmit Shift Register has been shifted out and
there are no new data currently present in the transmit buffer */
avr8_uart_tx_clear_pending(num);
}
#ifdef UART_0_ISR
AVR8_ISR(UART_0_ISR, _rx_isr_handler, 0);
#endif /* UART_0_ISR */
#ifdef UART_1_ISR
AVR8_ISR(UART_1_ISR, _rx_isr_handler, 1);
#endif /* UART_1_ISR */
#ifdef UART_2_ISR
AVR8_ISR(UART_2_ISR, _rx_isr_handler, 2);
#endif /* UART_2_ISR */
#ifdef UART_3_ISR
AVR8_ISR(UART_3_ISR, _rx_isr_handler, 3);
#endif /* UART_3_ISR */
#ifdef UART_0_ISR_TX
AVR8_ISR(UART_0_ISR_TX, _tx_isr_handler, 0);
#endif /* UART_0_ISR_TX */
#ifdef UART_1_ISR_TX
AVR8_ISR(UART_1_ISR_TX, _tx_isr_handler, 1);
#endif /* UART_1_ISR_TX */
#ifdef UART_2_ISR_TX
AVR8_ISR(UART_2_ISR_TX, _tx_isr_handler, 2);
#endif /* UART_2_ISR_TX */
#ifdef UART_3_ISR_TX
AVR8_ISR(UART_3_ISR_TX, _tx_isr_handler, 3);
#endif /* UART_3_ISR_TX */