1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/core/sched.c
2021-12-03 10:12:34 +01:00

309 lines
8.9 KiB
C

/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup core_sched
* @{
*
* @file
* @brief Scheduler implementation
*
* @author Kaspar Schleiser <kaspar@schleiser.de>
* @author René Kijewski <rene.kijewski@fu-berlin.de>
*
* @}
*/
#include <stdint.h>
#include <inttypes.h>
#include "sched.h"
#include "clist.h"
#include "bitarithm.h"
#include "irq.h"
#include "thread.h"
#include "log.h"
#ifdef MODULE_MPU_STACK_GUARD
#include "mpu.h"
#endif
#define ENABLE_DEBUG 0
#include "debug.h"
#ifdef PICOLIBC_TLS
#include <picotls.h>
#endif
/* Needed by OpenOCD to read sched_threads */
#if defined(__APPLE__) && defined(__MACH__)
#define FORCE_USED_SECTION __attribute__((used)) __attribute__((section( \
"__OPENOCD,__openocd")))
#else
#define FORCE_USED_SECTION __attribute__((used)) __attribute__((section( \
".openocd")))
#endif
/**
* @brief Symbols also used by OpenOCD, keep in sync with src/rtos/riot.c
* @{
*/
volatile kernel_pid_t sched_active_pid = KERNEL_PID_UNDEF;
volatile thread_t *sched_threads[KERNEL_PID_LAST + 1];
volatile int sched_num_threads = 0;
FORCE_USED_SECTION
const uint8_t max_threads = ARRAY_SIZE(sched_threads);
#ifdef DEVELHELP
/* OpenOCD can't determine struct offsets and additionally this member is only
* available if compiled with DEVELHELP */
FORCE_USED_SECTION
const uint8_t _tcb_name_offset = offsetof(thread_t, name);
#endif
/** @} */
volatile thread_t *sched_active_thread;
volatile unsigned int sched_context_switch_request;
clist_node_t sched_runqueues[SCHED_PRIO_LEVELS];
static uint32_t runqueue_bitcache = 0;
#ifdef MODULE_SCHED_CB
static void (*sched_cb)(kernel_pid_t active_thread,
kernel_pid_t next_thread) = NULL;
#endif
/* Depending on whether the CLZ instruction is available, the order of the
* runqueue_bitcache is reversed. When the instruction is available, it is
* faster to determine the MSBit set. When it is not available it is faster to
* determine the LSBit set. These functions abstract the runqueue modifications
* and readout away, switching between the two orders depending on the CLZ
* instruction availability
*/
static inline void _set_runqueue_bit(thread_t *process)
{
#if defined(BITARITHM_HAS_CLZ)
runqueue_bitcache |= BIT31 >> process->priority;
#else
runqueue_bitcache |= 1 << process->priority;
#endif
}
static inline void _clear_runqueue_bit(thread_t *process)
{
#if defined(BITARITHM_HAS_CLZ)
runqueue_bitcache &= ~(BIT31 >> process->priority);
#else
runqueue_bitcache &= ~(1 << process->priority);
#endif
}
static inline unsigned _get_prio_queue_from_runqueue(void)
{
#if defined(BITARITHM_HAS_CLZ)
return 31 - bitarithm_msb(runqueue_bitcache);
#else
return bitarithm_lsb(runqueue_bitcache);
#endif
}
static void _unschedule(thread_t *active_thread)
{
if (active_thread->status == STATUS_RUNNING) {
active_thread->status = STATUS_PENDING;
}
#if IS_ACTIVE(SCHED_TEST_STACK)
/* All platforms align the stack to word boundaries (possible wasting one
* word of RAM), so this access is not unaligned. Using an intermediate
* cast to uintptr_t to silence -Wcast-align
*/
if (*((uintptr_t *)(uintptr_t)active_thread->stack_start) !=
(uintptr_t)active_thread->stack_start) {
LOG_WARNING(
"scheduler(): stack overflow detected, pid=%" PRIkernel_pid "\n",
active_thread->pid);
}
#endif
#ifdef MODULE_SCHED_CB
if (sched_cb) {
sched_cb(active_thread->pid, KERNEL_PID_UNDEF);
}
#endif
}
thread_t *__attribute__((used)) sched_run(void)
{
thread_t *active_thread = thread_get_active();
thread_t *previous_thread = active_thread;
if (!IS_USED(MODULE_CORE_IDLE_THREAD) && !runqueue_bitcache) {
if (active_thread) {
_unschedule(active_thread);
active_thread = NULL;
}
do {
sched_arch_idle();
} while (!runqueue_bitcache);
}
sched_context_switch_request = 0;
unsigned nextrq = _get_prio_queue_from_runqueue();
thread_t *next_thread = container_of(sched_runqueues[nextrq].next->next,
thread_t, rq_entry);
#if (IS_USED(MODULE_SCHED_RUNQ_CALLBACK))
sched_runq_callback(nextrq);
#endif
DEBUG(
"sched_run: active thread: %" PRIkernel_pid ", next thread: %" PRIkernel_pid "\n",
(kernel_pid_t)((active_thread == NULL)
? KERNEL_PID_UNDEF
: active_thread->pid),
next_thread->pid);
next_thread->status = STATUS_RUNNING;
if (previous_thread == next_thread) {
#ifdef MODULE_SCHED_CB
/* Call the sched callback again only if the active thread is NULL. When
* active_thread is NULL, there was a sleep in between descheduling the
* previous thread and scheduling the new thread. Call the callback here
* again ensures that the time sleeping doesn't count as running the
* previous thread
*/
if (sched_cb && !active_thread) {
sched_cb(KERNEL_PID_UNDEF, next_thread->pid);
}
#endif
DEBUG("sched_run: done, sched_active_thread was not changed.\n");
}
else {
if (active_thread) {
_unschedule(active_thread);
}
sched_active_pid = next_thread->pid;
sched_active_thread = next_thread;
#ifdef MODULE_SCHED_CB
if (sched_cb) {
sched_cb(KERNEL_PID_UNDEF, next_thread->pid);
}
#endif
#ifdef PICOLIBC_TLS
_set_tls(next_thread->tls);
#endif
#ifdef MODULE_MPU_STACK_GUARD
mpu_configure(
2, /* MPU region 2 */
(uintptr_t)next_thread->stack_start + 31, /* Base Address (rounded up) */
MPU_ATTR(1, AP_RO_RO, 0, 1, 0, 1, MPU_SIZE_32B) /* Attributes and Size */
);
#endif
DEBUG("sched_run: done, changed sched_active_thread.\n");
}
return next_thread;
}
void sched_set_status(thread_t *process, thread_status_t status)
{
if (status >= STATUS_ON_RUNQUEUE) {
if (!(process->status >= STATUS_ON_RUNQUEUE)) {
DEBUG(
"sched_set_status: adding thread %" PRIkernel_pid " to runqueue %" PRIu8 ".\n",
process->pid, process->priority);
clist_rpush(&sched_runqueues[process->priority],
&(process->rq_entry));
_set_runqueue_bit(process);
/* some thread entered a runqueue
* if it is the active runqueue
* inform the runqueue_change callback */
#if (IS_USED(MODULE_SCHED_RUNQ_CALLBACK))
thread_t *active_thread = thread_get_active();
if (active_thread && active_thread->priority == process->priority) {
sched_runq_callback(process->priority);
}
#endif
}
}
else {
if (process->status >= STATUS_ON_RUNQUEUE) {
DEBUG(
"sched_set_status: removing thread %" PRIkernel_pid " from runqueue %" PRIu8 ".\n",
process->pid, process->priority);
clist_lpop(&sched_runqueues[process->priority]);
if (!sched_runqueues[process->priority].next) {
_clear_runqueue_bit(process);
#if (IS_USED(MODULE_SCHED_RUNQ_CALLBACK))
sched_runq_callback(process->priority);
#endif
}
}
}
process->status = status;
}
void sched_switch(uint16_t other_prio)
{
thread_t *active_thread = thread_get_active();
uint16_t current_prio = active_thread->priority;
int on_runqueue = (active_thread->status >= STATUS_ON_RUNQUEUE);
DEBUG("sched_switch: active pid=%" PRIkernel_pid " prio=%" PRIu16 " on_runqueue=%i "
", other_prio=%" PRIu16 "\n",
active_thread->pid, current_prio, on_runqueue,
other_prio);
if (!on_runqueue || (current_prio > other_prio)) {
if (irq_is_in()) {
DEBUG("sched_switch: setting sched_context_switch_request.\n");
sched_context_switch_request = 1;
}
else {
DEBUG("sched_switch: yielding immediately.\n");
thread_yield_higher();
}
}
else {
DEBUG("sched_switch: continuing without yield.\n");
}
}
NORETURN void sched_task_exit(void)
{
DEBUG("sched_task_exit: ending thread %" PRIkernel_pid "...\n",
thread_getpid());
(void)irq_disable();
sched_threads[thread_getpid()] = NULL;
sched_num_threads--;
sched_set_status(thread_get_active(), STATUS_STOPPED);
sched_active_thread = NULL;
cpu_switch_context_exit();
}
#ifdef MODULE_SCHED_CB
void sched_register_cb(void (*callback)(kernel_pid_t, kernel_pid_t))
{
sched_cb = callback;
}
#endif