1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/msp430/periph/spi_usart.c
Marian Buschsieweke 675dcc381c
cpu/msp430: rework MSP430 x1xx periph drivers
- Move common code for USART (shared SPI / UART peripheral) to its
  own file and allow sharing the USART peripheral to provide both
  UART and SPI in round-robin fashion.
- Configure both UART and SPI bus via a `struct` in the board's
  `periph_conf.h`
    - this allows allocating the two UARTs as needed by the use case
    - since both USARTs signals have a fixed connection to a single
      GPIO, most configuration is moved to the CPU
    - the board now only needs to decide which bus is provided by
      which USART

Note: Sharing an USART used as UART requires cooperation from the app:
- If the UART is used in TX-only mode (no RX callback), the driver
  will release the USART while not sending
- If the UART is used to also receive, the application needs to power
  the UART down while not expecting something to send. An
  `spi_acquire()` will be blocked while the UART is powered up.
2024-01-22 16:59:23 +01:00

166 lines
5.0 KiB
C

/*
* Copyright (C) 2015-2016 Freie Universität Berlin
* 2023 Otto-von-Guericke-Universität Magdeburg
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_msp430_x1xx
* @ingroup drivers_periph_spi
* @{
*
* @file
* @brief Low-level SPI driver implementation
*
* This SPI driver implementation does only support one single SPI device for
* now. This is sufficient, as most MSP430 x1xx CPU's only support two serial
* devices - one used as UART and one as SPI.
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Marian Buschsieweke <marian.buschsieweke@posteo.net>
*
* @}
*/
#include <assert.h>
#include "compiler_hints.h"
#include "periph/spi.h"
#include "periph_cpu.h"
void spi_init(spi_t bus)
{
assume((unsigned)bus < SPI_NUMOF);
/* trigger the pin configuration */
spi_init_pins(bus);
}
void spi_init_pins(spi_t bus)
{
assume((unsigned)bus < SPI_NUMOF);
const msp430_usart_spi_params_t *params = spi_config[bus].spi;
/* set output GPIOs to idle levels of the peripheral */
gpio_set(params->mosi);
gpio_clear(params->sck);
/* configure the pins as GPIOs, not attaching to the peripheral as of now */
gpio_init(params->miso, GPIO_IN);
gpio_init(params->mosi, GPIO_OUT);
gpio_init(params->sck, GPIO_OUT);
}
void spi_acquire(spi_t bus, spi_cs_t cs, spi_mode_t mode, spi_clk_t clk)
{
assume((unsigned)bus < SPI_NUMOF);
(void)cs;
const msp430_usart_spi_params_t *params = spi_config[bus].spi;
msp430_usart_t *dev = params->usart_params.dev;
msp430_usart_conf_t conf = {
.prescaler = msp430_usart_prescale(clk, USART_MIN_BR_SPI),
.ctl = CHAR | SYNC | MM,
};
/* get exclusive access to the USART (this will also indirectly ensure
* exclusive SPI bus access */
msp430_usart_acquire(&params->usart_params, &conf, params->enable_mask);
/* clock and phase are encoded in mode so that they can be directly be
* written into TCTL. TCTL has been initialized by
* msp430_usart_acquire(), so we don't need to wipe any previous clock
* phase or polarity state.
*
* STC disables "multi-master" mode, in which the STE pin would be connected
* to the CS output of any other SPI controller */
dev->TCTL |= STC | mode;
/* release from software reset */
dev->CTL &= ~(SWRST);
/* attach the pins only now after the peripheral is up and running, as
* otherwise noise is send out (could be observed on SCK with a logic
* analyzer). */
gpio_periph_mode(params->miso, true);
gpio_periph_mode(params->mosi, true);
gpio_periph_mode(params->sck, true);
}
void spi_release(spi_t bus)
{
assume((unsigned)bus < SPI_NUMOF);
const msp430_usart_spi_params_t *params = spi_config[bus].spi;
/* release the pins to avoid sending noise while the peripheral is
* reconfigured or used to provide other interfaces */
gpio_periph_mode(params->miso, false);
gpio_periph_mode(params->mosi, false);
gpio_periph_mode(params->sck, false);
/* release the peripheral */
msp430_usart_release(&params->usart_params);
}
void spi_transfer_bytes(spi_t bus, spi_cs_t cs, bool cont,
const void *out, void *in, size_t len)
{
assume((unsigned)bus < SPI_NUMOF);
const msp430_usart_spi_params_t *params = spi_config[bus].spi;
const msp430_usart_params_t *usart = &params->usart_params;
msp430_usart_t *dev = params->usart_params.dev;
const uint8_t *out_buf = out;
uint8_t *in_buf = in;
assert(out_buf || in_buf);
if (cs != SPI_CS_UNDEF) {
gpio_clear((gpio_t)cs);
}
/* if we only send out data, we do this the fast way... */
if (!in_buf) {
for (size_t i = 0; i < len; i++) {
while (!msp430_usart_get_tx_irq_flag(usart)) {
/* still busy waiting for TX to complete */
}
dev->TXBUF = out_buf[i];
}
/* finally we need to wait, until all transfers are complete */
while (!msp430_usart_are_both_irq_flags_set(usart)) {
/* still either TX, or RX, or both not completed */
}
(void)dev->RXBUF;
}
else if (!out_buf) {
for (size_t i = 0; i < len; i++) {
dev->TXBUF = 0;
while (!msp430_usart_get_rx_irq_flag(usart)) {
/* still busy waiting for RX to complete */
}
in_buf[i] = dev->RXBUF;
}
}
else {
for (size_t i = 0; i < len; i++) {
while (!msp430_usart_get_tx_irq_flag(usart)) {
/* still busy waiting for TX to complete */
}
dev->TXBUF = out_buf[i];
while (!msp430_usart_get_rx_irq_flag(usart)) {
/* still busy waiting for RX to complete */
}
in_buf[i] = dev->RXBUF;
}
}
if ((!cont) && (cs != SPI_CS_UNDEF)) {
gpio_set((gpio_t)cs);
}
}