1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/stm32/periph/eth.c
Erik Ekman 1986b5eb5c cpu/stm32/periph/eth: Disable hardware checksums
lwIP will fill them in already.

Having this enabled causes empty checksums to be sent: #19853
2023-09-27 21:55:11 +02:00

829 lines
25 KiB
C

/*
* Copyright (C) 2016 TriaGnoSys GmbH
* 2020 Otto-von-Guericke-Universität Magdeburg
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32
* @{
*
* @file
* @brief Low-level ETH driver implementation
*
* @author Víctor Ariño <victor.arino@triagnosys.com>
* @author Marian Buschsieweke <marian.buschsieweke@ovgu.de>
*
* @}
*/
#include <assert.h>
#include <errno.h>
#include <string.h>
#include "bitarithm.h"
#include "board.h"
#include "iolist.h"
#include "macros/utils.h"
#include "mii.h"
#include "mutex.h"
#include "net/ethernet.h"
#include "net/eui_provider.h"
#include "net/netdev/eth.h"
#include "periph/gpio.h"
#include "periph/gpio_ll.h"
#include "time_units.h"
#define ENABLE_DEBUG 0
#define ENABLE_DEBUG_VERBOSE 0
#include "debug.h"
#include "ztimer.h"
#define STM32_ETH_LINK_UP_TIMEOUT_MS (1UL * MS_PER_SEC)
static ztimer_t _link_status_timer;
/* Set the value of the divider with the clock configured */
#if !defined(CLOCK_CORECLOCK) || CLOCK_CORECLOCK < (20000000U)
#error This peripheral requires a CORECLOCK of at least 20MHz
#elif CLOCK_CORECLOCK < (35000000U)
#define CLOCK_RANGE ETH_MACMIIAR_CR_Div16
#elif CLOCK_CORECLOCK < (60000000U)
#define CLOCK_RANGE ETH_MACMIIAR_CR_Div26
#elif CLOCK_CORECLOCK < (100000000U)
#define CLOCK_RANGE ETH_MACMIIAR_CR_Div42
#elif CLOCK_CORECLOCK < (150000000U)
#define CLOCK_RANGE ETH_MACMIIAR_CR_Div62
#else /* CLOCK_CORECLOCK < (20000000U) */
#define CLOCK_RANGE ETH_MACMIIAR_CR_Div102
#endif /* CLOCK_CORECLOCK < (20000000U) */
/* Default DMA buffer setup */
#ifndef ETH_RX_DESCRIPTOR_COUNT
#define ETH_RX_DESCRIPTOR_COUNT (6U)
#endif
#ifndef ETH_TX_DESCRIPTOR_COUNT
#define ETH_TX_DESCRIPTOR_COUNT (8U)
#endif
#ifndef ETH_RX_BUFFER_SIZE
#define ETH_RX_BUFFER_SIZE (256U)
#endif
/* Bitmask to extract link state */
#define LINK_STATE (0x01)
/* Bitmask to extract notification state */
#define LINK_STATE_NOTIFIED (0x02)
#define LINK_STATE_DOWN (0x00)
#define LINK_STATE_UP (0x01)
#define LINK_STATE_NOTIFIED_DOWN (LINK_STATE_NOTIFIED | LINK_STATE_DOWN)
#define LINK_STATE_NOTIFIED_UP (LINK_STATE_NOTIFIED | LINK_STATE_UP)
#if (ETH_RX_BUFFER_SIZE % 16) != 0
/* For compatibility with 128bit memory interfaces, the buffer size needs to
* be a multiple of 16 Byte. For 64 bit memory interfaces need the size to be
* a multiple of 8 Byte, for 32 bit a multiple of 4 byte is sufficient. */
#warning "ETH_RX_BUFFER_SIZE is not a multiple of 16. (See comment above.)"
#endif
#if ETH_RX_DESCRIPTOR_COUNT * ETH_RX_BUFFER_SIZE < 1524U
#warning "Total RX buffers lower than MTU, you won't receive huge frames!"
#endif
/**
* @name GPIOs to use for tracing STM32 Ethernet state via module
* `stm32_eth_tracing`
* @{
*/
#ifndef STM32_ETH_TRACING_TX_PIN_NUM
# if defined(LED1_PIN_NUM) || defined(DOXYGEN)
/**
* @brief pin to trace TX events
*
* This pin will be set when TX starts and cleared when the corresponding
*/
# define STM32_ETH_TRACING_TX_PIN_NUM LED1_PIN_NUM
# else
# define STM32_ETH_TRACING_TX_PIN_NUM 0
# endif
#endif
#ifndef STM32_ETH_TRACING_TX_PORT_NUM
# if defined(LED1_PORT_NUM) || defined(DOXYGEN)
/**
* @brief port to trace TX events
*/
# define STM32_ETH_TRACING_TX_PORT_NUM LED1_PORT_NUM
# else
# define STM32_ETH_TRACING_TX_PORT_NUM 0
# endif
#endif
#ifndef STM32_ETH_TRACING_RX_PIN_NUM
# if defined(LED2_PIN_NUM) || defined(DOXYGEN)
/**
* @brief pin to trace RX events
*/
# define STM32_ETH_TRACING_RX_PIN_NUM LED2_PIN_NUM
# else
# define STM32_ETH_TRACING_RX_PIN_NUM 0
# endif
#endif
#ifndef STM32_ETH_TRACING_RX_PORT_NUM
# if defined(LED2_PORT_NUM) || defined(DOXYGEN)
/**
* @brief port to trace RX events
*/
# define STM32_ETH_TRACING_RX_PORT_NUM LED2_PORT_NUM
# else
# define STM32_ETH_TRACING_RX_PORT_NUM 0
# endif
#endif
/** @} */
/* Synchronization between IRQ and thread context */
mutex_t stm32_eth_tx_completed = MUTEX_INIT_LOCKED;
/* Descriptors */
static edma_desc_t rx_desc[ETH_RX_DESCRIPTOR_COUNT];
static edma_desc_t tx_desc[ETH_TX_DESCRIPTOR_COUNT];
static edma_desc_t *rx_curr;
static edma_desc_t *tx_curr;
/* RX Buffers */
static char rx_buffer[ETH_RX_DESCRIPTOR_COUNT][ETH_RX_BUFFER_SIZE];
/* Netdev used in RIOT's API to upper layer */
netdev_t *stm32_eth_netdev;
/* Used for checking the link status */
static uint8_t _link_state = LINK_STATE_DOWN;
static void _debug_tx_descriptor_info(unsigned line)
{
if (IS_ACTIVE(ENABLE_DEBUG) && IS_ACTIVE(ENABLE_DEBUG_VERBOSE)) {
DEBUG("[stm32_eth:%u] TX descriptors:\n", line);
for (unsigned i = 0; i < ETH_TX_DESCRIPTOR_COUNT; i++) {
uint32_t status = tx_desc[i].status;
char next_valid;
if (i < ETH_TX_DESCRIPTOR_COUNT - 1) {
next_valid = (tx_desc[i].desc_next == &tx_desc[i + 1])
? '1' : '0';
}
else {
next_valid = (tx_desc[i].desc_next == &tx_desc[0])
? '1' : '0';
}
DEBUG(" %s %u: OWN=%c, ES=%c, UF=%c, EC=%c, NC=%c, FS=%c, "
"LS=%c, next valid=%c\n",
(tx_curr == tx_desc + i) ? "-->" : " ",
i,
(status & TX_DESC_STAT_OWN) ? '1' : '0',
(status & TX_DESC_STAT_ES) ? '1' : '0',
(status & TX_DESC_STAT_UF) ? '1' : '0',
(status & TX_DESC_STAT_EC) ? '1' : '0',
(status & TX_DESC_STAT_NC) ? '1' : '0',
(status & TX_DESC_STAT_FS) ? '1' : '0',
(status & TX_DESC_STAT_LS) ? '1' : '0',
next_valid);
}
}
}
static inline uint32_t _len_from_rx_desc_status(uint32_t status)
{
/* bits 16-29 contain the frame length including 4 B frame check sequence */
return (status >> 16) & 0x3fff;
}
static void _debug_rx_descriptor_info(unsigned line)
{
if (IS_ACTIVE(ENABLE_DEBUG) && IS_ACTIVE(ENABLE_DEBUG_VERBOSE)) {
DEBUG("[stm32_eth:%u] RX descriptors:\n", line);
for (unsigned i = 0; i < ETH_RX_DESCRIPTOR_COUNT; i++) {
uint32_t status = rx_desc[i].status;
char next_valid;
if (i < ETH_RX_DESCRIPTOR_COUNT - 1) {
next_valid = (rx_desc[i].desc_next == &rx_desc[i + 1])
? '1' : '0';
}
else {
next_valid = (rx_desc[i].desc_next == &rx_desc[0])
? '1' : '0';
}
DEBUG(" %s %u: OWN=%c, FS=%c, LS=%c, ES=%c, DE=%c, FL=%" PRIu32
", next valid=%c\n",
(rx_curr == rx_desc + i) ? "-->" : " ",
i,
(status & RX_DESC_STAT_OWN) ? '1' : '0',
(status & RX_DESC_STAT_FS) ? '1' : '0',
(status & RX_DESC_STAT_LS) ? '1' : '0',
(status & RX_DESC_STAT_ES) ? '1' : '0',
(status & RX_DESC_STAT_DE) ? '1' : '0',
_len_from_rx_desc_status(status),
next_valid);
}
}
}
/**
* @brief Read or write a MII register
*
* @param[in] reg MII register to access
* @param[in] value Value to write (ignored when @p write is `false`)
* @param[in] write Whether to write (`true`) or read (`false`) to/from the
* register
*
* @return The value of the MII register accessed. (This should be equal to
* @p value, if @p write was `true`.)
*/
static uint16_t _mii_reg_transfer(unsigned reg, uint16_t value, bool write)
{
unsigned tmp;
const uint16_t phy_addr = eth_config.phy_addr;
while (ETH->MACMIIAR & ETH_MACMIIAR_MB) {}
tmp = CLOCK_RANGE | ETH_MACMIIAR_MB
| (((phy_addr & 0x1f) << 11) | ((reg & 0x1f) << 6));
if (write) {
tmp |= ETH_MACMIIAR_MW;
ETH->MACMIIDR = value;
}
ETH->MACMIIAR = tmp;
while (ETH->MACMIIAR & ETH_MACMIIAR_MB) {}
return ETH->MACMIIDR;
}
static inline int16_t _mii_reg_read(uint8_t reg)
{
return _mii_reg_transfer(reg, 0, false);
}
static inline void _mii_reg_write(uint8_t reg, uint16_t value)
{
_mii_reg_transfer(reg, value, true);
}
static inline bool _get_link_status(void)
{
return (_mii_reg_read(MII_BMSR) & MII_BMSR_LINK);
}
static void stm32_eth_get_addr(char *out)
{
unsigned t;
t = ETH->MACA0HR;
out[5] = (t >> 8);
out[4] = (t & 0xff);
t = ETH->MACA0LR;
out[3] = (t >> 24);
out[2] = (t >> 16);
out[1] = (t >> 8);
out[0] = (t & 0xff);
}
/** Set the mac address. The peripheral supports up to 4 MACs but only one is
* implemented */
static void stm32_eth_set_addr(const uint8_t *addr)
{
ETH->MACA0HR &= 0xffff0000;
ETH->MACA0HR |= (addr[5] << 8) | addr[4];
ETH->MACA0LR = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
}
static void _init_dma_descriptors(void)
{
size_t i;
for (i = 0; i < ETH_RX_DESCRIPTOR_COUNT; i++) {
rx_desc[i].status = RX_DESC_STAT_OWN;
rx_desc[i].control = RX_DESC_CTRL_RCH | (ETH_RX_BUFFER_SIZE & 0x0fff);
rx_desc[i].buffer_addr = &rx_buffer[i][0];
if ((i + 1) < ETH_RX_DESCRIPTOR_COUNT) {
rx_desc[i].desc_next = &rx_desc[i + 1];
}
}
rx_desc[i - 1].desc_next = &rx_desc[0];
for (i = 0; i < ETH_TX_DESCRIPTOR_COUNT - 1; i++) {
tx_desc[i].desc_next = &tx_desc[i + 1];
}
tx_desc[ETH_TX_DESCRIPTOR_COUNT - 1].desc_next = &tx_desc[0];
rx_curr = &rx_desc[0];
tx_curr = &tx_desc[0];
ETH->DMARDLAR = (uintptr_t)rx_curr;
ETH->DMATDLAR = (uintptr_t)tx_curr;
_debug_rx_descriptor_info(__LINE__);
_debug_tx_descriptor_info(__LINE__);
}
static void _reset_eth_dma(void)
{
/* disable DMA TX and RX */
ETH->DMAOMR &= ~(ETH_DMAOMR_ST | ETH_DMAOMR_SR);
_init_dma_descriptors();
/* enable DMA TX and RX */
ETH->DMAOMR |= ETH_DMAOMR_ST | ETH_DMAOMR_SR;
}
static int stm32_eth_set(netdev_t *dev, netopt_t opt,
const void *value, size_t max_len)
{
int res = -1;
switch (opt) {
case NETOPT_ADDRESS:
assert(max_len >= ETHERNET_ADDR_LEN);
stm32_eth_set_addr(value);
res = ETHERNET_ADDR_LEN;
break;
default:
res = netdev_eth_set(dev, opt, value, max_len);
break;
}
return res;
}
static int stm32_eth_get(netdev_t *dev, netopt_t opt,
void *value, size_t max_len)
{
int res = -1;
switch (opt) {
case NETOPT_ADDRESS:
assert(max_len >= ETHERNET_ADDR_LEN);
stm32_eth_get_addr(value);
res = ETHERNET_ADDR_LEN;
break;
case NETOPT_LINK:
assert(max_len == sizeof(netopt_enable_t));
{
netopt_enable_t tmp = _get_link_status();
memcpy(value, &tmp, sizeof(tmp));
}
res = sizeof(netopt_enable_t);
break;
default:
res = netdev_eth_get(dev, opt, value, max_len);
break;
}
return res;
}
static void _timer_cb(void *arg)
{
netdev_t *dev = arg;
uint8_t state = LINK_STATE_DOWN;
if (_get_link_status()) {
state = LINK_STATE_UP;
}
if ((_link_state & LINK_STATE) != state) {
/* link state changed, notify upper layer */
_link_state = state;
dev->event_callback(dev, NETDEV_EVENT_ISR);
}
ztimer_set(ZTIMER_MSEC, &_link_status_timer, STM32_ETH_LINK_UP_TIMEOUT_MS);
}
static bool _phy_can_negotiate(void)
{
return (_mii_reg_read(MII_BMSR) & MII_BMSR_HAS_AN);
}
static void _complete_auto_negotiation(void)
{
/* first, wait until auto-negotiation really has completed */
uint16_t bmsr;
do {
bmsr = _mii_reg_read(MII_BMSR);
if (!(bmsr & MII_BMSR_LINK)) {
/* disconnected during auto-negotiation */
return;
}
} while (!(bmsr & MII_BMSR_AN_DONE));
DEBUG("[stm32_eth] PHY auto-negotiation completed, PHY link up\n");
/* Get current MACCR state without speed config */
uint32_t maccr = ETH->MACCR & ~(ETH_MACCR_FES | ETH_MACCR_DM);
/* stupidly, there is seemingly no way to get current connection speed
* and duplex mode. But we can deduce it from our advertised capabilities
* and the link partner abilities */
uint16_t adv = _mii_reg_read(MII_ADVERTISE);
uint16_t lpa = _mii_reg_read(MII_LPA);
if ((adv & MII_ADVERTISE_100) && (lpa & MII_LPA_100)) {
/* 100 Mbps */
maccr |= ETH_MACCR_FES;
if ((adv & MII_ADVERTISE_100_F) && (lpa & MII_LPA_100_F)) {
/* full duplex */
maccr |= ETH_MACCR_DM;
}
}
else if ((adv & MII_ADVERTISE_10_F) && (lpa & MII_LPA_10_F)) {
/* full duplex */
maccr |= ETH_MACCR_DM;
}
DEBUG("[stm32_eth] %s Mbps %s duplex \n",
(maccr & ETH_MACCR_FES) ? "100" : "10",
(maccr & ETH_MACCR_DM) ? "full" : "half");
ETH->MACCR = maccr;
}
static void _setup_phy(void)
{
DEBUG("[stm32_eth] Reset PHY\n");
/* reset PHY */
_mii_reg_write(MII_BMCR, MII_BMCR_RESET);
/* wait till PHY reset is completed */
while (MII_BMCR_RESET & _mii_reg_read(MII_BMCR)) {}
/* check if auto-negotiation is enabled and supported */
if (IS_USED(MODULE_STM32_ETH_AUTO) && _phy_can_negotiate()) {
_mii_reg_write(MII_BMCR, MII_BMCR_AN_ENABLE);
DEBUG("[stm32_eth] Enabled auto-negotiation\n");
/* We'll continue link setup once auto-negotiation is done */
return;
}
/* Get current MACCR state without speed config */
uint32_t maccr = ETH->MACCR & ~(ETH_MACCR_FES | ETH_MACCR_DM);
DEBUG("[stm32_eth] No PHY auto-negotiation disabled or unsupported\n");
/* disable auto-negotiation and force manually configured speed to be
* used */
_mii_reg_write(MII_BMCR, eth_config.speed);
/* configure MACCR to match PHY speed */
if (eth_config.speed & MII_BMCR_FULL_DPLX) {
maccr |= ETH_MACCR_DM;
}
if (eth_config.speed & MII_BMCR_SPEED_100) {
maccr |= ETH_MACCR_FES;
}
DEBUG("[stm32_eth] %s Mbps %s duplex \n",
(maccr & ETH_MACCR_FES) ? "100" : "10",
(maccr & ETH_MACCR_DM) ? "full" : "half");
/* Apply new duplex & speed configuration in MAC */
ETH->MACCR = maccr;
}
static int stm32_eth_init(netdev_t *netdev)
{
(void)netdev;
if (IS_USED(MODULE_STM32_ETH_TRACING)) {
gpio_ll_init(GPIO_PORT(STM32_ETH_TRACING_TX_PORT_NUM),
STM32_ETH_TRACING_TX_PIN_NUM,
&gpio_ll_out);
gpio_ll_init(GPIO_PORT(STM32_ETH_TRACING_RX_PORT_NUM),
STM32_ETH_TRACING_RX_PIN_NUM,
&gpio_ll_out);
}
if (IS_USED(MODULE_STM32_ETH_LINK_UP)) {
_link_status_timer.callback = _timer_cb;
_link_status_timer.arg = netdev;
ztimer_set(ZTIMER_MSEC, &_link_status_timer, STM32_ETH_LINK_UP_TIMEOUT_MS);
}
/* The PTP clock is initialized prior to the netdevs and will have already
* initialized the common stuff, if used.*/
if (!IS_USED(MODULE_PERIPH_INIT_PTP)) {
stm32_eth_common_init();
}
/* set the clock divider */
while (ETH->MACMIIAR & ETH_MACMIIAR_MB) {}
ETH->MACMIIAR = CLOCK_RANGE;
/* ROD = Don't receive own frames in half-duplex mode
* IPCO = Drop IPv4 packets carrying TCP/UDP/ICMP when checksum is invalid
* APCS = Do not pass padding and CRC fields to application (CRC is checked
* by hardware already) */
ETH->MACCR |= ETH_MACCR_ROD | ETH_MACCR_IPCO | ETH_MACCR_APCS;
/* pass all */
//ETH->MACFFR |= ETH_MACFFR_RA;
/* pass on perfect filter match and pass all multicast address matches */
ETH->MACFFR |= ETH_MACFFR_PAM;
/* store forward */
ETH->DMAOMR |= (ETH_DMAOMR_RSF | ETH_DMAOMR_TSF | ETH_DMAOMR_OSF);
/* configure DMA */
ETH->DMABMR = ETH_DMABMR_DA | ETH_DMABMR_AAB | ETH_DMABMR_FB
| ETH_DMABMR_RDP_32Beat | ETH_DMABMR_PBL_32Beat
| ETH_DMABMR_EDE;
eui48_t hwaddr;
netdev_eui48_get(netdev, &hwaddr);
stm32_eth_set_addr(hwaddr.uint8);
ETH->DMAIER |= ETH_DMAIER_NISE | ETH_DMAIER_TIE | ETH_DMAIER_RIE;
/* enable transmitter and receiver */
ETH->MACCR |= ETH_MACCR_TE | ETH_MACCR_RE;
/* flush transmit FIFO */
ETH->DMAOMR |= ETH_DMAOMR_FTF;
/* wait for FIFO flushing to complete */
while (ETH->DMAOMR & ETH_DMAOMR_FTF) { }
_reset_eth_dma();
_setup_phy();
/* signal link UP if no proper link detection is enabled */
if (!IS_USED(MODULE_STM32_ETH_LINK_UP)) {
netdev->event_callback(netdev, NETDEV_EVENT_LINK_UP);
}
return 0;
}
static int stm32_eth_send(netdev_t *netdev, const struct iolist *iolist)
{
(void)netdev;
netdev->event_callback(netdev, NETDEV_EVENT_TX_STARTED);
unsigned bytes_to_send = iolist_size(iolist);
/* Input must not be bigger than maximum allowed frame length */
assert(bytes_to_send <= ETHERNET_FRAME_LEN);
/* This API is not thread safe, check that no other thread is sending */
assert(!(tx_desc[0].status & TX_DESC_STAT_OWN));
/* We cannot send more chunks than allocated descriptors */
assert(iolist_count(iolist) <= ETH_TX_DESCRIPTOR_COUNT);
_debug_tx_descriptor_info(__LINE__);
edma_desc_t *dma_iter = tx_curr;
for (unsigned i = 0; iolist; iolist = iolist->iol_next, i++) {
dma_iter->control = iolist->iol_len;
dma_iter->buffer_addr = iolist->iol_base;
uint32_t status = TX_DESC_STAT_IC | TX_DESC_STAT_TCH | TX_DESC_STAT_OWN;
if (!i) {
/* fist chunk */
status |= TX_DESC_STAT_FS;
}
if (!iolist->iol_next) {
/* last chunk */
status |= TX_DESC_STAT_LS;
}
dma_iter->status = status;
dma_iter = dma_iter->desc_next;
}
if (IS_USED(MODULE_STM32_ETH_TRACING)) {
gpio_ll_set(GPIO_PORT(STM32_ETH_TRACING_TX_PORT_NUM),
(1U << STM32_ETH_TRACING_TX_PIN_NUM));
}
/* start TX */
ETH->DMATPDR = 0;
/* await completion */
if (IS_ACTIVE(ENABLE_DEBUG_VERBOSE)) {
DEBUG("[stm32_eth] Started to send %u B via DMA\n", bytes_to_send);
}
mutex_lock(&stm32_eth_tx_completed);
if (IS_USED(MODULE_STM32_ETH_TRACING)) {
gpio_ll_clear(GPIO_PORT(STM32_ETH_TRACING_TX_PORT_NUM),
(1U << STM32_ETH_TRACING_TX_PIN_NUM));
}
if (IS_ACTIVE(ENABLE_DEBUG_VERBOSE)) {
DEBUG("[stm32_eth] TX completed\n");
}
/* Error check */
int error = 0;
while (1) {
uint32_t status = tx_curr->status;
/* The Error Summary (ES) bit is set, if any error during TX occurred */
if (status & TX_DESC_STAT_ES) {
if (status & TX_DESC_STAT_EC) {
DEBUG("[stm32_eth] collision in half duplex mode\n");
error = -EBUSY;
}
else if (status & TX_DESC_STAT_NC) {
DEBUG("[stm32_eth] no carrier detected during TX\n");
error = -ENETDOWN;
}
else {
/* don't detect underflow error here, as we trigger TX only
* after all descriptors have been handed over to the DMA.
* Hence, the DMA should never run out of desciprtors during
* TX. */
DEBUG("[stm32_eth] unhandled error during TX\n");
error = -EIO;
}
_reset_eth_dma();
}
tx_curr = tx_curr->desc_next;
if (status & TX_DESC_STAT_LS) {
break;
}
}
_debug_tx_descriptor_info(__LINE__);
netdev->event_callback(netdev, NETDEV_EVENT_TX_COMPLETE);
if (error) {
return error;
}
return (int)bytes_to_send;
}
static int get_rx_frame_size(void)
{
_debug_rx_descriptor_info(__LINE__);
edma_desc_t *i = rx_curr;
uint32_t status;
while (1) {
/* Wait until DMA gave up control over descriptor */
if ((status = i->status) & RX_DESC_STAT_OWN) {
DEBUG("[stm32_eth] RX not completed (spurious interrupt?)\n");
return -EAGAIN;
}
if (status & RX_DESC_STAT_DE) {
DEBUG("[stm32_eth] Overflow during RX\n");
_reset_eth_dma();
return -EOVERFLOW;
}
if (status & RX_DESC_STAT_ES) {
DEBUG("[stm32_eth] Error during RX\n");
_reset_eth_dma();
return -EIO;
}
if (status & RX_DESC_STAT_LS) {
break;
}
i = i->desc_next;
}
return _len_from_rx_desc_status(status) - ETHERNET_FCS_LEN;
}
static void drop_frame_and_update_rx_curr(void)
{
while (1) {
uint32_t old_status = rx_curr->status;
/* hand over old descriptor to DMA */
rx_curr->status = RX_DESC_STAT_OWN;
rx_curr = rx_curr->desc_next;
if (old_status & (RX_DESC_STAT_LS | RX_DESC_STAT_ES)) {
/* reached either last DMA descriptor of frame or error ==> done */
return;
}
}
}
static void handle_lost_rx_irqs(void)
{
edma_desc_t *iter = rx_curr;
while (1) {
uint32_t status = iter->status;
if (status & RX_DESC_STAT_OWN) {
break;
}
if (status & RX_DESC_STAT_LS) {
DEBUG("[stm32_eth] Lost RX IRQ, sending event to upper layer\n");
/* we use the ISR event for this, as the upper layer calls recv()
* right away on an NETDEV_EVENT_RX_COMPLETE. Because there could be
* potentially quite a lot of received frames in the queue, we might
* risk a stack overflow if we would send an
* NETDEV_EVENT_RX_COMPLETE
*/
netdev_trigger_event_isr(stm32_eth_netdev);
break;
}
iter = iter->desc_next;
}
}
static int stm32_eth_recv(netdev_t *netdev, void *_buf, size_t max_len,
void *_info)
{
(void)netdev;
netdev_eth_rx_info_t *info = _info;
char *buf = _buf;
/* Determine the size of received frame. The frame might span multiple
* DMA buffers */
int size = get_rx_frame_size();
if (size < 0) {
if (size != -EAGAIN) {
DEBUG("[stm32_eth] Dropping frame due to error\n");
drop_frame_and_update_rx_curr();
}
return size;
}
if (!buf) {
if (max_len) {
DEBUG("[stm32_eth] Dropping frame as requested by upper layer\n");
drop_frame_and_update_rx_curr();
}
return size;
}
if (max_len < (size_t)size) {
DEBUG("[stm32_eth] Buffer provided by upper layer is too small\n");
drop_frame_and_update_rx_curr();
return -ENOBUFS;
}
/* Fetch payload, collect RX timestamp from last descriptor if module periph_ptp is used, and
* hand DMA descriptors back to the DMA */
size_t remain = size;
while (1) {
/* there can be one more DMA descriptor than needed for holding the Ethernet
* payload, as the 4 byte FCS will also be stored by DMA */
if (remain) {
size_t chunk = MIN(remain, ETH_RX_BUFFER_SIZE);
memcpy(buf, rx_curr->buffer_addr, chunk);
buf += chunk;
remain -= chunk;
}
if (rx_curr->status & RX_DESC_STAT_LS) {
/* LS bit set --> reached last DMA descriptor of this frame */
if (IS_USED(MODULE_PERIPH_PTP)) {
info->timestamp = rx_curr->ts_low;
info->timestamp += (uint64_t)rx_curr->ts_high * NS_PER_SEC;
info->flags |= NETDEV_ETH_RX_INFO_FLAG_TIMESTAMP;
}
rx_curr->status = RX_DESC_STAT_OWN;
rx_curr = rx_curr->desc_next;
break;
}
rx_curr->status = RX_DESC_STAT_OWN;
rx_curr = rx_curr->desc_next;
}
if (IS_USED(MODULE_STM32_ETH_TRACING)) {
gpio_ll_clear(GPIO_PORT(STM32_ETH_TRACING_RX_PORT_NUM),
(1U << STM32_ETH_TRACING_RX_PIN_NUM));
}
_debug_rx_descriptor_info(__LINE__);
handle_lost_rx_irqs();
return size;
}
void stm32_eth_isr_eth_wkup(void)
{
cortexm_isr_end();
}
static void stm32_eth_isr(netdev_t *netdev)
{
if (IS_USED(MODULE_STM32_ETH_LINK_UP)) {
switch (_link_state) {
case LINK_STATE_UP:
DEBUG("[stm32_eth] Link UP\n");
if (IS_USED(MODULE_STM32_ETH_AUTO)) {
/* Complete auto-negotiation of the link */
_complete_auto_negotiation();
}
netdev->event_callback(netdev, NETDEV_EVENT_LINK_UP);
_link_state = LINK_STATE_NOTIFIED_UP;
return;
case LINK_STATE_DOWN:
DEBUG("[stm32_eth] Link DOWN\n");
netdev->event_callback(netdev, NETDEV_EVENT_LINK_DOWN);
_link_state = LINK_STATE_NOTIFIED_DOWN;
return;
default:
break;
}
}
if (IS_USED(MODULE_STM32_ETH_TRACING)) {
gpio_ll_set(GPIO_PORT(STM32_ETH_TRACING_RX_PORT_NUM),
(1U << STM32_ETH_TRACING_RX_PIN_NUM));
}
netdev->event_callback(netdev, NETDEV_EVENT_RX_COMPLETE);
}
static const netdev_driver_t netdev_driver_stm32f4eth = {
.send = stm32_eth_send,
.recv = stm32_eth_recv,
.init = stm32_eth_init,
.isr = stm32_eth_isr,
.get = stm32_eth_get,
.set = stm32_eth_set,
};
void stm32_eth_netdev_setup(netdev_t *netdev)
{
stm32_eth_netdev = netdev;
netdev->driver = &netdev_driver_stm32f4eth;
netdev_register(netdev, NETDEV_STM32_ETH, 0);
}