1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/lpc1768/periph/uart.c
2019-05-22 13:42:07 +02:00

221 lines
5.9 KiB
C

/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_lpc1768
* @ingroup drivers_periph_uart
* @{
*
* @file
* @brief Implementation of the low-level UART driver for the LPC1768
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @}
*/
#include <stdint.h>
#include "cpu.h"
#include "periph/uart.h"
#include "periph_conf.h"
/**
* @brief UART device configurations
*/
static uart_isr_ctx_t config[UART_NUMOF];
static int init_base(uart_t uart, uint32_t baudrate);
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
{
int res = init_base(uart, baudrate);
if (res != UART_OK) {
return res;
}
/* save callbacks */
config[uart].rx_cb = rx_cb;
config[uart].arg = arg;
switch (uart) {
#if UART_0_EN
case UART_0:
/* configure and enable global device interrupts */
NVIC_SetPriority(UART_0_IRQ, UART_IRQ_PRIO);
NVIC_EnableIRQ(UART_0_IRQ);
/* enable RX interrupt */
UART_0_DEV->IER |= (1 << 0);
break;
#endif
#if UART_1_EN
case UART_1:
/* configure and enable global device interrupts */
NVIC_SetPriority(UART_1_IRQ, UART_IRQ_PRIO);
NVIC_EnableIRQ(UART_1_IRQ);
/* enable RX interrupt */
UART_1_DEV->IER |= (1 << 0);
break;
#endif
}
return UART_OK;
}
static int init_base(uart_t uart, uint32_t baudrate)
{
switch (uart) {
#if UART_0_EN
case UART_0:
/* this implementation only supports 115200 baud */
if (baudrate != 115200) {
return UART_NOBAUD;
}
/* power on UART device and select peripheral clock */
UART_0_CLKEN();
UART_0_CLKSEL();
/* set mode to 8N1 and enable access to divisor latch */
UART_0_DEV->LCR = ((0x3 << 0) | (1 << 7));
/* set baud rate registers (fixed for now) */
UART_0_DEV->DLM = 0;
UART_0_DEV->DLL = 13;
/* enable FIFOs */
UART_0_DEV->FCR = 1;
/* select and configure the pin for RX */
UART_0_RX_PINSEL &= ~(0x3 << (UART_0_RX_PIN * 2));
UART_0_RX_PINSEL |= (UART_0_AF << (UART_0_RX_PIN * 2));
UART_0_RX_PINMODE &= ~(0x3 << (UART_0_RX_PIN * 2));
UART_0_RX_PINMODE |= (0x2 << (UART_0_RX_PIN * 2));
/* select and configure the pin for TX */
UART_0_TX_PINSEL &= ~(0x3 << (UART_0_TX_PIN * 2));
UART_0_TX_PINSEL |= (UART_0_AF << (UART_0_TX_PIN * 2));
UART_0_TX_PINMODE &= ~(0x3 << (UART_0_TX_PIN * 2));
UART_0_TX_PINMODE |= (0x2 << (UART_0_TX_PIN * 2));
/* disable access to divisor latch */
UART_0_DEV->LCR &= ~(1 << 7);
break;
#endif
#if UART_1_EN
case UART_1:
/* this implementation only supports 115200 baud */
if (baudrate != 115200) {
return UART_NOBAUD;
}
/* power on UART device and select peripheral clock */
UART_1_CLKEN();
UART_1_CLKSEL();
/* set mode to 8N1 and enable access to divisor latch */
UART_1_DEV->LCR = ((0x3 << 0) | (1 << 7));
/* set baud rate registers (fixed for now) */
UART_1_DEV->DLM = 0;
UART_1_DEV->DLL = 13;
/* enable FIFOs */
UART_1_DEV->FCR = 1;
/* select and configure the pin for RX */
UART_1_RX_PINSEL &= ~(0x3 << (UART_1_RX_PIN * 2));
UART_1_RX_PINSEL |= (UART_1_AF << (UART_1_RX_PIN * 2));
UART_1_RX_PINMODE &= ~(0x3 << (UART_1_RX_PIN * 2));
UART_1_RX_PINMODE |= (0x2 << (UART_1_RX_PIN * 2));
/* select and configure the pin for TX */
UART_1_TX_PINSEL &= ~(0x3 << (UART_1_TX_PIN * 2));
UART_1_TX_PINSEL |= (UART_1_AF << (UART_1_TX_PIN * 2));
UART_1_TX_PINMODE &= ~(0x3 << (UART_1_TX_PIN * 2));
UART_1_TX_PINMODE |= (0x2 << (UART_1_TX_PIN * 2));
/* disable access to divisor latch */
UART_1_DEV->LCR &= ~(1 << 7);
break;
#endif
default:
return UART_NODEV;
}
return UART_OK;
}
void uart_write(uart_t uart, const uint8_t *data, size_t len)
{
LPC_UART_TypeDef *dev = NULL;
switch (uart) {
#if UART_0_EN
case UART_0:
dev = (LPC_UART_TypeDef *)UART_0_DEV;
break;
#endif
#if UART_1_EN
case UART_1:
dev = (LPC_UART_TypeDef *)UART_1_DEV;
break;
#endif
default:
return;
}
if (dev) {
for (size_t i = 0; i < len; i++) {
while (!(dev->LSR & (1 << 5))) {} /* wait for THRE bit to be set */
dev->THR = data[i];
}
}
}
void uart_poweron(uart_t uart)
{
switch (uart) {
#if UART_0_EN
case UART_0:
UART_0_CLKEN();
break;
#endif
#if UART_1_EN
case UART_1:
UART_1_CLKEN();
break;
#endif
}
}
void uart_poweroff(uart_t uart)
{
switch (uart) {
#if UART_0_EN
case UART_0:
UART_0_CLKDIS();
break;
#endif
#if UART_1_EN
case UART_1:
UART_1_CLKDIS();
break;
#endif
}
}
#if UART_0_EN
void UART_0_ISR(void)
{
if (UART_0_DEV->LSR & (1 << 0)) { /* is RDR flag set? */
uint8_t data = (uint8_t)UART_0_DEV->RBR;
config[UART_0].rx_cb(config[UART_0].arg, data);
}
cortexm_isr_end();
}
#endif
#if UART_1_EN
void UART_1_ISR(void)
{
if (UART_1_DEV->LSR & (1 << 0)) { /* is RDR flag set? */
uint8_t data = (uint8_t)UART_1_DEV->RBR;
config[UART_1].rx_cb(config[UART_1].arg, data);
}
cortexm_isr_end();
}
#endif