1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 01:32:44 +01:00
RIOT/cpu/cc2538/include/vendor/hw_aes.h
Benjamin Valentin 9d836888c2 treewide: fix file permissions
C files should not be executable.
2020-07-08 17:32:36 +02:00

4380 lines
292 KiB
C

/******************************************************************************
* Filename: hw_aes.h
* Revised: $Date: 2013-04-12 15:10:54 +0200 (Fri, 12 Apr 2013) $
* Revision: $Revision: 9735 $
*
* Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com/
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
#ifndef __HW_AES_H__
#define __HW_AES_H__
//*****************************************************************************
//
// The following are defines for the AES register offsets.
//
//*****************************************************************************
#define AES_DMAC_CH0_CTRL 0x4008B000 // Channel control This register
// is used for channel enabling and
// priority selection. When a
// channel is disabled, it becomes
// inactive only when all ongoing
// requests are finished.
#define AES_DMAC_CH0_EXTADDR 0x4008B004 // Channel external address
#define AES_DMAC_CH0_DMALENGTH \
0x4008B00C // Channel DMA length
#define AES_DMAC_STATUS 0x4008B018 // DMAC status This register
// provides the actual state of
// each DMA channel. It also
// reports port errors in case
// these were received by the
// master interface module during
// the data transfer.
#define AES_DMAC_SWRES 0x4008B01C // DMAC software reset register
// Software reset is used to reset
// the DMAC to stop all transfers
// and clears the port error status
// register. After the software
// reset is performed, all the
// channels are disabled and no new
// requests are performed by the
// channels. The DMAC waits for the
// existing (active) requests to
// finish and accordingly sets the
// DMAC status registers.
#define AES_DMAC_CH1_CTRL 0x4008B020 // Channel control This register
// is used for channel enabling and
// priority selection. When a
// channel is disabled, it becomes
// inactive only when all ongoing
// requests are finished.
#define AES_DMAC_CH1_EXTADDR 0x4008B024 // Channel external address
#define AES_DMAC_CH1_DMALENGTH \
0x4008B02C // Channel DMA length
#define AES_DMAC_MST_RUNPARAMS \
0x4008B078 // DMAC master run-time parameters
// This register defines all the
// run-time parameters for the AHB
// master interface port. These
// parameters are required for the
// proper functioning of the
// EIP-101m AHB master adapter.
#define AES_DMAC_PERSR 0x4008B07C // DMAC port error raw status
// register This register provides
// the actual status of individual
// port errors. It also indicates
// which channel is serviced by an
// external AHB port (which is
// frozen by a port error). A port
// error aborts operations on all
// serviced channels (channel
// enable bit is forced to 0) and
// prevents further transfers via
// that port until the error is
// cleared by writing to the
// DMAC_SWRES register.
#define AES_DMAC_OPTIONS 0x4008B0F8 // DMAC options register These
// registers contain information
// regarding the different options
// configured in this DMAC.
#define AES_DMAC_VERSION 0x4008B0FC // DMAC version register This
// register contains an indication
// (or signature) of the EIP type
// of this DMAC, as well as the
// hardware version/patch numbers.
#define AES_KEY_STORE_WRITE_AREA \
0x4008B400 // Key store write area register
// This register defines where the
// keys should be written in the
// key store RAM. After writing
// this register, the key store
// module is ready to receive the
// keys through a DMA operation. In
// case the key data transfer
// triggered an error in the key
// store, the error will be
// available in the interrupt
// status register after the DMA is
// finished. The key store
// write-error is asserted when the
// programmed/selected area is not
// completely written. This error
// is also asserted when the DMA
// operation writes to ram areas
// that are not selected. The key
// store RAM is divided into 8
// areas of 128 bits. 192-bit keys
// written in the key store RAM
// should start on boundaries of
// 256 bits. This means that
// writing a 192-bit key to the key
// store RAM must be done by
// writing 256 bits of data with
// the 64 most-significant bits set
// to 0. These bits are ignored by
// the AES engine.
#define AES_KEY_STORE_WRITTEN_AREA \
0x4008B404 // Key store written area register
// This register shows which areas
// of the key store RAM contain
// valid written keys. When a new
// key needs to be written to the
// key store, on a location that is
// already occupied by a valid key,
// this key area must be cleared
// first. This can be done by
// writing this register before the
// new key is written to the key
// store memory. Attempting to
// write to a key area that already
// contains a valid key is not
// allowed and results in an error.
#define AES_KEY_STORE_SIZE 0x4008B408 // Key store size register This
// register defines the size of the
// keys that are written with DMA.
// This register should be
// configured before writing to the
// KEY_STORE_WRITE_AREA register.
#define AES_KEY_STORE_READ_AREA \
0x4008B40C // Key store read area register
// This register selects the key
// store RAM area from where the
// key needs to be read that will
// be used for an AES operation.
// The operation directly starts
// after writing this register.
// When the operation is finished,
// the status of the key store read
// operation is available in the
// interrupt status register. Key
// store read error is asserted
// when a RAM area is selected
// which does not contain valid
// written key.
#define AES_AES_KEY2_0 0x4008B500 // AES_KEY2_0 / AES_GHASH_H_IN_0
// Second Key / GHASH Key
// (internal, but clearable) The
// following registers are not
// accessible through the host for
// reading and writing. They are
// used to store internally
// calculated key information and
// intermediate results. However,
// when the host performs a write
// to the any of the respective
// AES_KEY2_n or AES_KEY3_n
// addresses, respectively the
// whole 128-bit AES_KEY2_n or
// AES_KEY3_n register is cleared
// to 0s. The AES_GHASH_H_IN_n
// registers (required for GHASH,
// which is part of GCM) are mapped
// to the AES_KEY2_n registers. The
// (intermediate) authentication
// result for GCM and CCM is stored
// in the AES_KEY3_n register.
#define AES_AES_KEY2_1 0x4008B504 // AES_KEY2_1 / AES_GHASH_H_IN_1
// Second Key / GHASH Key
// (internal, but clearable) The
// following registers are not
// accessible through the host for
// reading and writing. They are
// used to store internally
// calculated key information and
// intermediate results. However,
// when the host performs a write
// to the any of the respective
// AES_KEY2_n or AES_KEY3_n
// addresses, respectively the
// whole 128-bit AES_KEY2_n or
// AES_KEY3_n register is cleared
// to 0s. The AES_GHASH_H_IN_n
// registers (required for GHASH,
// which is part of GCM) are mapped
// to the AES_KEY2_n registers. The
// (intermediate) authentication
// result for GCM and CCM is stored
// in the AES_KEY3_n register.
#define AES_AES_KEY2_2 0x4008B508 // AES_KEY2_2 / AES_GHASH_H_IN_2
// Second Key / GHASH Key
// (internal, but clearable) The
// following registers are not
// accessible through the host for
// reading and writing. They are
// used to store internally
// calculated key information and
// intermediate results. However,
// when the host performs a write
// to the any of the respective
// AES_KEY2_n or AES_KEY3_n
// addresses, respectively the
// whole 128-bit AES_KEY2_n or
// AES_KEY3_n register is cleared
// to 0s. The AES_GHASH_H_IN_n
// registers (required for GHASH,
// which is part of GCM) are mapped
// to the AES_KEY2_n registers. The
// (intermediate) authentication
// result for GCM and CCM is stored
// in the AES_KEY3_n register.
#define AES_AES_KEY2_3 0x4008B50C // AES_KEY2_3 / AES_GHASH_H_IN_3
// Second Key / GHASH Key
// (internal, but clearable) The
// following registers are not
// accessible through the host for
// reading and writing. They are
// used to store internally
// calculated key information and
// intermediate results. However,
// when the host performs a write
// to the any of the respective
// AES_KEY2_n or AES_KEY3_n
// addresses, respectively the
// whole 128-bit AES_KEY2_n or
// AES_KEY3_n register is cleared
// to 0s. The AES_GHASH_H_IN_n
// registers (required for GHASH,
// which is part of GCM) are mapped
// to the AES_KEY2_n registers. The
// (intermediate) authentication
// result for GCM and CCM is stored
// in the AES_KEY3_n register.
#define AES_AES_KEY3_0 0x4008B510 // AES_KEY3_0 / AES_KEY2_4 Third
// Key / Second Key (internal, but
// clearable) The following
// registers are not accessible
// through the host for reading and
// writing. They are used to store
// internally calculated key
// information and intermediate
// results. However, when the host
// performs a write to the any of
// the respective AES_KEY2_n or
// AES_KEY3_n addresses,
// respectively the whole 128-bit
// AES_KEY2_n or AES_KEY3_n
// register is cleared to 0s. The
// AES_GHASH_H_IN_n registers
// (required for GHASH, which is
// part of GCM) are mapped to the
// AES_KEY2_n registers. The
// (intermediate) authentication
// result for GCM and CCM is stored
// in the AES_KEY3_n register.
#define AES_AES_KEY3_1 0x4008B514 // AES_KEY3_1 / AES_KEY2_5 Third
// Key / Second Key (internal, but
// clearable) The following
// registers are not accessible
// through the host for reading and
// writing. They are used to store
// internally calculated key
// information and intermediate
// results. However, when the host
// performs a write to the any of
// the respective AES_KEY2_n or
// AES_KEY3_n addresses,
// respectively the whole 128-bit
// AES_KEY2_n or AES_KEY3_n
// register is cleared to 0s. The
// AES_GHASH_H_IN_n registers
// (required for GHASH, which is
// part of GCM) are mapped to the
// AES_KEY2_n registers. The
// (intermediate) authentication
// result for GCM and CCM is stored
// in the AES_KEY3_n register.
#define AES_AES_KEY3_2 0x4008B518 // AES_KEY3_2 / AES_KEY2_6 Third
// Key / Second Key (internal, but
// clearable) The following
// registers are not accessible
// through the host for reading and
// writing. They are used to store
// internally calculated key
// information and intermediate
// results. However, when the host
// performs a write to the any of
// the respective AES_KEY2_n or
// AES_KEY3_n addresses,
// respectively the whole 128-bit
// AES_KEY2_n or AES_KEY3_n
// register is cleared to 0s. The
// AES_GHASH_H_IN_n registers
// (required for GHASH, which is
// part of GCM) are mapped to the
// AES_KEY2_n registers. The
// (intermediate) authentication
// result for GCM and CCM is stored
// in the AES_KEY3_n register.
#define AES_AES_KEY3_3 0x4008B51C // AES_KEY3_3 / AES_KEY2_7 Third
// Key / Second Key (internal, but
// clearable) The following
// registers are not accessible
// through the host for reading and
// writing. They are used to store
// internally calculated key
// information and intermediate
// results. However, when the host
// performs a write to the any of
// the respective AES_KEY2_n or
// AES_KEY3_n addresses,
// respectively the whole 128-bit
// AES_KEY2_n or AES_KEY3_n
// register is cleared to 0s. The
// AES_GHASH_H_IN_n registers
// (required for GHASH, which is
// part of GCM) are mapped to the
// AES_KEY2_n registers. The
// (intermediate) authentication
// result for GCM and CCM is stored
// in the AES_KEY3_n register.
#define AES_AES_IV_0 0x4008B540 // AES initialization vector
// registers These registers are
// used to provide and read the IV
// from the AES engine.
#define AES_AES_IV_1 0x4008B544 // AES initialization vector
// registers These registers are
// used to provide and read the IV
// from the AES engine.
#define AES_AES_IV_2 0x4008B548 // AES initialization vector
// registers These registers are
// used to provide and read the IV
// from the AES engine.
#define AES_AES_IV_3 0x4008B54C // AES initialization vector
// registers These registers are
// used to provide and read the IV
// from the AES engine.
#define AES_AES_CTRL 0x4008B550 // AES input/output buffer control
// and mode register This register
// specifies the AES mode of
// operation for the EIP-120t.
// Electronic codebook (ECB) mode
// is automatically selected if
// bits [28:5] of this register are
// all 0.
#define AES_AES_C_LENGTH_0 0x4008B554 // AES crypto length registers
// (LSW) These registers are used
// to write the Length values to
// the EIP-120t. While processing,
// the length values decrement to
// 0. If both lengths are 0, the
// data stream is finished and a
// new context is requested. For
// basic AES modes (ECB, CBC, and
// CTR), a crypto length of 0 can
// be written if multiple streams
// need to be processed with the
// same key. Writing 0 length
// results in continued data
// requests until a new context is
// written. For the other modes
// (CBC-MAC, GCM, and CCM) no (new)
// data requests are done if the
// length decrements to or equals
// 0. It is advised to write a new
// length per packet. If the length
// registers decrement to 0, no new
// data is processed until a new
// context or length value is
// written. When writing a new mode
// without writing the length
// registers, the length register
// values from the previous context
// is reused.
#define AES_AES_C_LENGTH_1 0x4008B558 // AES crypto length registers
// (MSW) These registers are used
// to write the Length values to
// the EIP-120t. While processing,
// the length values decrement to
// 0. If both lengths are 0, the
// data stream is finished and a
// new context is requested. For
// basic AES modes (ECB, CBC, and
// CTR), a crypto length of 0 can
// be written if multiple streams
// need to be processed with the
// same key. Writing 0 length
// results in continued data
// requests until a new context is
// written. For the other modes
// (CBC-MAC, GCM and CCM) no (new)
// data requests are done if the
// length decrements to or equals
// 0. It is advised to write a new
// length per packet. If the length
// registers decrement to 0, no new
// data is processed until a new
// context or length value is
// written. When writing a new mode
// without writing the length
// registers, the length register
// values from the previous context
// is reused.
#define AES_AES_AUTH_LENGTH 0x4008B55C // Authentication length register
#define AES_AES_DATA_IN_OUT_0 0x4008B560 // Data input/output registers The
// data registers are typically
// accessed through the DMA and not
// with host writes and/or reads.
// However, for debugging purposes
// the data input/output registers
// can be accessed via host write
// and read operations. The
// registers are used to buffer the
// input/output data blocks to/from
// the EIP-120t. Note: The data
// input buffer (AES_DATA_IN_n) and
// data output buffer
// (AES_DATA_OUT_n) are mapped to
// the same address locations.
// Writes (both DMA and host) to
// these addresses load the Input
// Buffer while reads pull from the
// Output Buffer. Therefore, for
// write access, the data input
// buffer is written; for read
// access, the data output buffer
// is read. The data input buffer
// must be written before starting
// an operation. The data output
// buffer contains valid data on
// completion of an operation.
// Therefore, any 128-bit data
// block can be split over multiple
// 32-bit word transfers; these can
// be mixed with other host
// transfers over the external
// interface.
#define AES_AES_DATA_IN_OUT_1 0x4008B564 // Data Input/Output Registers The
// data registers are typically
// accessed via DMA and not with
// host writes and/or reads.
// However, for debugging purposes
// the Data Input/Output Registers
// can be accessed via host write
// and read operations. The
// registers are used to buffer the
// input/output data blocks to/from
// the EIP-120t. Note: The data
// input buffer (AES_DATA_IN_n) and
// data output buffer
// (AES_DATA_OUT_n) are mapped to
// the same address locations.
// Writes (both DMA and host) to
// these addresses load the Input
// Buffer while reads pull from the
// Output Buffer. Therefore, for
// write access, the data input
// buffer is written; for read
// access, the data output buffer
// is read. The data input buffer
// must be written before starting
// an operation. The data output
// buffer contains valid data on
// completion of an operation.
// Therefore, any 128-bit data
// block can be split over multiple
// 32-bit word transfers; these can
// be mixed with other host
// transfers over the external
// interface.
#define AES_AES_DATA_IN_OUT_2 0x4008B568 // Data Input/Output Registers The
// data registers are typically
// accessed via DMA and not with
// host writes and/or reads.
// However, for debugging purposes
// the Data Input/Output Registers
// can be accessed via host write
// and read operations. The
// registers are used to buffer the
// input/output data blocks to/from
// the EIP-120t. Note: The data
// input buffer (AES_DATA_IN_n) and
// data output buffer
// (AES_DATA_OUT_n) are mapped to
// the same address locations.
// Writes (both DMA and host) to
// these addresses load the Input
// Buffer while reads pull from the
// Output Buffer. Therefore, for
// write access, the data input
// buffer is written; for read
// access, the data output buffer
// is read. The data input buffer
// must be written before starting
// an operation. The data output
// buffer contains valid data on
// completion of an operation.
// Therefore, any 128-bit data
// block can be split over multiple
// 32-bit word transfers; these can
// be mixed with other host
// transfers over the external
// interface.
#define AES_AES_DATA_IN_OUT_3 0x4008B56C // Data Input/Output Registers The
// data registers are typically
// accessed via DMA and not with
// host writes and/or reads.
// However, for debugging purposes
// the Data Input/Output Registers
// can be accessed via host write
// and read operations. The
// registers are used to buffer the
// input/output data blocks to/from
// the EIP-120t. Note: The data
// input buffer (AES_DATA_IN_n) and
// data output buffer
// (AES_DATA_OUT_n) are mapped to
// the same address locations.
// Writes (both DMA and host) to
// these addresses load the Input
// Buffer while reads pull from the
// Output Buffer. Therefore, for
// write access, the data input
// buffer is written; for read
// access, the data output buffer
// is read. The data input buffer
// must be written before starting
// an operation. The data output
// buffer contains valid data on
// completion of an operation.
// Therefore, any 128-bit data
// block can be split over multiple
// 32-bit word transfers; these can
// be mixed with other host
// transfers over the external
// interface.
#define AES_AES_TAG_OUT_0 0x4008B570 // TAG registers The tag registers
// can be accessed via DMA or
// directly with host reads. These
// registers buffer the TAG from
// the EIP-120t. The registers are
// shared with the intermediate
// authentication result registers,
// but cannot be read until the
// processing is finished. While
// processing, a read from these
// registers returns 0s. If an
// operation does not return a TAG,
// reading from these registers
// returns an IV. If an operation
// returns a TAG plus an IV and
// both need to be read by the
// host, the host must first read
// the TAG followed by the IV.
// Reading these in reverse order
// will return the IV twice.
#define AES_AES_TAG_OUT_1 0x4008B574 // TAG registers The tag registers
// can be accessed via DMA or
// directly with host reads. These
// registers buffer the TAG from
// the EIP-120t. The registers are
// shared with the intermediate
// authentication result registers,
// but cannot be read until the
// processing is finished. While
// processing, a read from these
// registers returns 0s. If an
// operation does not return a TAG,
// reading from these registers
// returns an IV. If an operation
// returns a TAG plus an IV and
// both need to be read by the
// host, the host must first read
// the TAG followed by the IV.
// Reading these in reverse order
// returns the IV twice.
#define AES_AES_TAG_OUT_2 0x4008B578 // TAG registers The tag registers
// can be accessed via DMA or
// directly with host reads. These
// registers buffer the TAG from
// the EIP-120t. The registers are
// shared with the intermediate
// authentication result registers,
// but cannot be read until the
// processing is finished. While
// processing, a read from these
// registers returns 0s. If an
// operation does not return a TAG,
// reading from these registers
// returns an IV. If an operation
// returns a TAG plus an IV and
// both need to be read by the
// host, the host must first read
// the TAG followed by the IV.
// Reading these in reverse order
// returns the IV twice.
#define AES_AES_TAG_OUT_3 0x4008B57C // TAG registers The tag registers
// can be accessed via DMA or
// directly with host reads. These
// registers buffer the TAG from
// the EIP-120t. The registers are
// shared with the intermediate
// authentication result registers,
// but cannot be read until the
// processing is finished. While
// processing, a read from these
// registers returns 0s. If an
// operation does not return a TAG,
// reading from these registers
// returns an IV. If an operation
// returns a TAG plus an IV and
// both need to be read by the
// host, the host must first read
// the TAG followed by the IV.
// Reading these in reverse order
// returns the IV twice.
#define AES_HASH_DATA_IN_0 0x4008B600 // HASH data input registers The
// data input registers should be
// used to provide input data to
// the hash module through the
// slave interface.
#define AES_HASH_DATA_IN_1 0x4008B604 // HASH data input registers The
// data input registers should be
// used to provide input data to
// the hash module through the
// slave interface.
#define AES_HASH_DATA_IN_2 0x4008B608 // HASH data input registers The
// data input registers should be
// used to provide input data to
// the hash module through the
// slave interface.
#define AES_HASH_DATA_IN_3 0x4008B60C // HASH data input registers The
// data input registers should be
// used to provide input data to
// the hash module through the
// slave interface.
#define AES_HASH_DATA_IN_4 0x4008B610 // HASH data input registers The
// data input registers should be
// used to provide input data to
// the hash module through the
// slave interface.
#define AES_HASH_DATA_IN_5 0x4008B614 // HASH data input registers The
// data input registers should be
// used to provide input data to
// the hash module through the
// slave interface.
#define AES_HASH_DATA_IN_6 0x4008B618 // HASH data input registers The
// data input registers should be
// used to provide input data to
// the hash module through the
// slave interface.
#define AES_HASH_DATA_IN_7 0x4008B61C // HASH data input registers The
// data input registers should be
// used to provide input data to
// the hash module through the
// slave interface.
#define AES_HASH_DATA_IN_8 0x4008B620 // HASH data input registers The
// data input registers should be
// used to provide input data to
// the hash module through the
// slave interface.
#define AES_HASH_DATA_IN_9 0x4008B624 // HASH data input registers The
// data input registers should be
// used to provide input data to
// the hash module through the
// slave interface.
#define AES_HASH_DATA_IN_10 0x4008B628 // HASH data input registers The
// data input registers should be
// used to provide input data to
// the hash module through the
// slave interface.
#define AES_HASH_DATA_IN_11 0x4008B62C // HASH data input registers The
// data input registers should be
// used to provide input data to
// the hash module through the
// slave interface.
#define AES_HASH_DATA_IN_12 0x4008B630 // HASH data input registers The
// data input registers should be
// used to provide input data to
// the hash module through the
// slave interface.
#define AES_HASH_DATA_IN_13 0x4008B634 // HASH data input registers The
// data input registers should be
// used to provide input data to
// the hash module through the
// slave interface.
#define AES_HASH_DATA_IN_14 0x4008B638 // HASH data input registers The
// data input registers should be
// used to provide input data to
// the hash module through the
// slave interface.
#define AES_HASH_DATA_IN_15 0x4008B63C // HASH data input registers The
// data input registers should be
// used to provide input data to
// the hash module through the
// slave interface.
#define AES_HASH_IO_BUF_CTRL 0x4008B640 // Input/output buffer control and
// status register This register
// pair shares a single address
// location and contains bits that
// control and monitor the data
// flow between the host and the
// hash engine.
#define AES_HASH_MODE_IN 0x4008B644 // Hash mode register
#define AES_HASH_LENGTH_IN_L 0x4008B648 // Hash length register
#define AES_HASH_LENGTH_IN_H 0x4008B64C // Hash length register
#define AES_HASH_DIGEST_A 0x4008B650 // Hash digest registers The hash
// digest registers consist of
// eight 32-bit registers, named
// HASH_DIGEST_A to HASH_DIGEST_H.
// After processing a message, the
// output digest can be read from
// these registers. These registers
// can be written with an
// intermediate hash result for
// continued hash operations.
#define AES_HASH_DIGEST_B 0x4008B654 // Hash digest registers The hash
// digest registers consist of
// eight 32-bit registers, named
// HASH_DIGEST_A to HASH_DIGEST_H.
// After processing a message, the
// output digest can be read from
// these registers. These registers
// can be written with an
// intermediate hash result for
// continued hash operations.
#define AES_HASH_DIGEST_C 0x4008B658 // Hash digest registers The hash
// digest registers consist of
// eight 32-bit registers, named
// HASH_DIGEST_A to HASH_DIGEST_H.
// After processing a message, the
// output digest can be read from
// these registers. These registers
// can be written with an
// intermediate hash result for
// continued hash operations.
#define AES_HASH_DIGEST_D 0x4008B65C // Hash digest registers The hash
// digest registers consist of
// eight 32-bit registers, named
// HASH_DIGEST_A to HASH_DIGEST_H.
// After processing a message, the
// output digest can be read from
// these registers. These registers
// can be written with an
// intermediate hash result for
// continued hash operations.
#define AES_HASH_DIGEST_E 0x4008B660 // Hash digest registers The hash
// digest registers consist of
// eight 32-bit registers, named
// HASH_DIGEST_A to HASH_DIGEST_H.
// After processing a message, the
// output digest can be read from
// these registers. These registers
// can be written with an
// intermediate hash result for
// continued hash operations.
#define AES_HASH_DIGEST_F 0x4008B664 // Hash digest registers The hash
// digest registers consist of
// eight 32-bit registers, named
// HASH_DIGEST_A to HASH_DIGEST_H.
// After processing a message, the
// output digest can be read from
// these registers. These registers
// can be written with an
// intermediate hash result for
// continued hash operations.
#define AES_HASH_DIGEST_G 0x4008B668 // Hash digest registers The hash
// digest registers consist of
// eight 32-bit registers, named
// HASH_DIGEST_A to HASH_DIGEST_H.
// After processing a message, the
// output digest can be read from
// these registers. These registers
// can be written with an
// intermediate hash result for
// continued hash operations.
#define AES_HASH_DIGEST_H 0x4008B66C // Hash digest registers The hash
// digest registers consist of
// eight 32-bit registers, named
// HASH_DIGEST_A to HASH_DIGEST_H.
// After processing a message, the
// output digest can be read from
// these registers. These registers
// can be written with an
// intermediate hash result for
// continued hash operations.
#define AES_CTRL_ALG_SEL 0x4008B700 // Algorithm select This algorithm
// selection register configures
// the internal destination of the
// DMA controller.
#define AES_CTRL_PROT_EN 0x4008B704 // Master PROT privileged access
// enable This register enables the
// second bit (bit [1]) of the AHB
// HPROT bus of the AHB master
// interface when a read action of
// key(s) is performed on the AHB
// master interface for writing
// keys into the store module.
#define AES_CTRL_SW_RESET 0x4008B740 // Software reset
#define AES_CTRL_INT_CFG 0x4008B780 // Interrupt configuration
#define AES_CTRL_INT_EN 0x4008B784 // Interrupt enable
#define AES_CTRL_INT_CLR 0x4008B788 // Interrupt clear
#define AES_CTRL_INT_SET 0x4008B78C // Interrupt set
#define AES_CTRL_INT_STAT 0x4008B790 // Interrupt status
#define AES_CTRL_OPTIONS 0x4008B7F8 // Options register
#define AES_CTRL_VERSION 0x4008B7FC // Version register
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_DMAC_CH0_CTRL register.
//
//*****************************************************************************
#define AES_DMAC_CH0_CTRL_PRIO 0x00000002 // Channel priority 0: Low 1: High
// If both channels have the same
// priority, access of the channels
// to the external port is
// arbitrated using the round robin
// scheme. If one channel has a
// high priority and another one
// low, the channel with the high
// priority is served first, in
// case of simultaneous access
// requests.
#define AES_DMAC_CH0_CTRL_PRIO_M \
0x00000002
#define AES_DMAC_CH0_CTRL_PRIO_S 1
#define AES_DMAC_CH0_CTRL_EN 0x00000001 // Channel enable 0: Disabled 1:
// Enable Note: Disabling an active
// channel interrupts the DMA
// operation. The ongoing block
// transfer completes, but no new
// transfers are requested.
#define AES_DMAC_CH0_CTRL_EN_M 0x00000001
#define AES_DMAC_CH0_CTRL_EN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_DMAC_CH0_EXTADDR register.
//
//*****************************************************************************
#define AES_DMAC_CH0_EXTADDR_ADDR_M \
0xFFFFFFFF // Channel external address value
// When read during operation, it
// holds the last updated external
// address after being sent to the
// master interface.
#define AES_DMAC_CH0_EXTADDR_ADDR_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_DMAC_CH0_DMALENGTH register.
//
//*****************************************************************************
#define AES_DMAC_CH0_DMALENGTH_DMALEN_M \
0x0000FFFF // Channel DMA length in bytes
// During configuration, this
// register contains the DMA
// transfer length in bytes. During
// operation, it contains the last
// updated value of the DMA
// transfer length after being sent
// to the master interface. Note:
// Setting this register to a
// nonzero value starts the
// transfer if the channel is
// enabled. Therefore, this
// register must be written last
// when setting up a DMA channel.
#define AES_DMAC_CH0_DMALENGTH_DMALEN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_DMAC_STATUS register.
//
//*****************************************************************************
#define AES_DMAC_STATUS_PORT_ERR \
0x00020000 // Reflects possible transfer
// errors on the AHB port.
#define AES_DMAC_STATUS_PORT_ERR_M \
0x00020000
#define AES_DMAC_STATUS_PORT_ERR_S 17
#define AES_DMAC_STATUS_CH1_ACT 0x00000002 // A value of 1 indicates that
// channel 1 is active (DMA
// transfer on-going).
#define AES_DMAC_STATUS_CH1_ACT_M \
0x00000002
#define AES_DMAC_STATUS_CH1_ACT_S 1
#define AES_DMAC_STATUS_CH0_ACT 0x00000001 // A value of 1 indicates that
// channel 0 is active (DMA
// transfer on-going).
#define AES_DMAC_STATUS_CH0_ACT_M \
0x00000001
#define AES_DMAC_STATUS_CH0_ACT_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_DMAC_SWRES register.
//
//*****************************************************************************
#define AES_DMAC_SWRES_SWRES 0x00000001 // Software reset enable 0 =
// Disabled 1 = Enabled
// (self-cleared to 0) Completion
// of the software reset must be
// checked through the DMAC_STATUS
// register.
#define AES_DMAC_SWRES_SWRES_M 0x00000001
#define AES_DMAC_SWRES_SWRES_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_DMAC_CH1_CTRL register.
//
//*****************************************************************************
#define AES_DMAC_CH1_CTRL_PRIO 0x00000002 // Channel priority 0: Low 1: High
// If both channels have the same
// priority, access of the channels
// to the external port is
// arbitrated using the round robin
// scheme. If one channel has a
// high priority and another one
// low, the channel with the high
// priority is served first, in
// case of simultaneous access
// requests.
#define AES_DMAC_CH1_CTRL_PRIO_M \
0x00000002
#define AES_DMAC_CH1_CTRL_PRIO_S 1
#define AES_DMAC_CH1_CTRL_EN 0x00000001 // Channel enable 0: Disabled 1:
// Enable Note: Disabling an active
// channel interrupts the DMA
// operation. The ongoing block
// transfer completes, but no new
// transfers are requested.
#define AES_DMAC_CH1_CTRL_EN_M 0x00000001
#define AES_DMAC_CH1_CTRL_EN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_DMAC_CH1_EXTADDR register.
//
//*****************************************************************************
#define AES_DMAC_CH1_EXTADDR_ADDR_M \
0xFFFFFFFF // Channel external address value.
// When read during operation, it
// holds the last updated external
// address after being sent to the
// master interface.
#define AES_DMAC_CH1_EXTADDR_ADDR_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_DMAC_CH1_DMALENGTH register.
//
//*****************************************************************************
#define AES_DMAC_CH1_DMALENGTH_DMALEN_M \
0x0000FFFF // Channel DMA length in bytes.
// During configuration, this
// register contains the DMA
// transfer length in bytes. During
// operation, it contains the last
// updated value of the DMA
// transfer length after being sent
// to the master interface. Note:
// Setting this register to a
// nonzero value starts the
// transfer if the channel is
// enabled. Therefore, this
// register must be written last
// when setting up a DMA channel.
#define AES_DMAC_CH1_DMALENGTH_DMALEN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_DMAC_MST_RUNPARAMS register.
//
//*****************************************************************************
#define AES_DMAC_MST_RUNPARAMS_AHB_MST1_BURST_SIZE_M \
0x0000F000 // Maximum burst size that can be
// performed on the AHB bus 0010b =
// 4 bytes (default) 0011b = 8
// bytes 0100b = 16 bytes 0101b =
// 32 bytes 0110b = 64 bytes Others
// = Reserved
#define AES_DMAC_MST_RUNPARAMS_AHB_MST1_BURST_SIZE_S 12
#define AES_DMAC_MST_RUNPARAMS_AHB_MST1_IDLE_EN \
0x00000800 // Idle insertion between
// consecutive burst transfers on
// AHB 0: No Idle insertion 1: Idle
// insertion
#define AES_DMAC_MST_RUNPARAMS_AHB_MST1_IDLE_EN_M \
0x00000800
#define AES_DMAC_MST_RUNPARAMS_AHB_MST1_IDLE_EN_S 11
#define AES_DMAC_MST_RUNPARAMS_AHB_MST1_INCR_EN \
0x00000400 // Burst length type of AHB
// transfer 0: Unspecified length
// burst transfers 1: Fixed length
// burst or single transfers
#define AES_DMAC_MST_RUNPARAMS_AHB_MST1_INCR_EN_M \
0x00000400
#define AES_DMAC_MST_RUNPARAMS_AHB_MST1_INCR_EN_S 10
#define AES_DMAC_MST_RUNPARAMS_AHB_MST1_LOCK_EN \
0x00000200 // Locked transform on AHB 0:
// Transfers are not locked 1:
// Transfers are locked
#define AES_DMAC_MST_RUNPARAMS_AHB_MST1_LOCK_EN_M \
0x00000200
#define AES_DMAC_MST_RUNPARAMS_AHB_MST1_LOCK_EN_S 9
#define AES_DMAC_MST_RUNPARAMS_AHB_MST1_BIGEND \
0x00000100 // Endianess for the AHB master 0:
// Little endian 1: Big endian
#define AES_DMAC_MST_RUNPARAMS_AHB_MST1_BIGEND_M \
0x00000100
#define AES_DMAC_MST_RUNPARAMS_AHB_MST1_BIGEND_S 8
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_DMAC_PERSR register.
//
//*****************************************************************************
#define AES_DMAC_PERSR_PORT1_AHB_ERROR \
0x00001000 // A value of 1 indicates that the
// EIP-101 has detected an AHB bus
// error
#define AES_DMAC_PERSR_PORT1_AHB_ERROR_M \
0x00001000
#define AES_DMAC_PERSR_PORT1_AHB_ERROR_S 12
#define AES_DMAC_PERSR_PORT1_CHANNEL \
0x00000200 // Indicates which channel has
// serviced last (channel 0 or
// channel 1) by AHB master port.
#define AES_DMAC_PERSR_PORT1_CHANNEL_M \
0x00000200
#define AES_DMAC_PERSR_PORT1_CHANNEL_S 9
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_DMAC_OPTIONS register.
//
//*****************************************************************************
#define AES_DMAC_OPTIONS_NR_OF_CHANNELS_M \
0x00000F00 // Number of channels implemented,
// value in the range 1-8.
#define AES_DMAC_OPTIONS_NR_OF_CHANNELS_S 8
#define AES_DMAC_OPTIONS_NR_OF_PORTS_M \
0x00000007 // Number of ports implemented,
// value in range 1-4.
#define AES_DMAC_OPTIONS_NR_OF_PORTS_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_DMAC_VERSION register.
//
//*****************************************************************************
#define AES_DMAC_VERSION_HW_MAJOR_VERSION_M \
0x0F000000 // Major version number
#define AES_DMAC_VERSION_HW_MAJOR_VERSION_S 24
#define AES_DMAC_VERSION_HW_MINOR_VERSION_M \
0x00F00000 // Minor version number
#define AES_DMAC_VERSION_HW_MINOR_VERSION_S 20
#define AES_DMAC_VERSION_HW_PATCH_LEVEL_M \
0x000F0000 // Patch level Starts at 0 at
// first delivery of this version
#define AES_DMAC_VERSION_HW_PATCH_LEVEL_S 16
#define AES_DMAC_VERSION_EIP_NUMBER_COMPL_M \
0x0000FF00 // Bit-by-bit complement of the
// EIP_NUMBER field bits.
#define AES_DMAC_VERSION_EIP_NUMBER_COMPL_S 8
#define AES_DMAC_VERSION_EIP_NUMBER_M \
0x000000FF // Binary encoding of the
// EIP-number of this DMA
// controller (209)
#define AES_DMAC_VERSION_EIP_NUMBER_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_KEY_STORE_WRITE_AREA register.
//
//*****************************************************************************
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA7 \
0x00000080 // Each RAM_AREAx represents an
// area of 128 bits. Select the key
// store RAM area(s) where the
// key(s) needs to be written 0:
// RAM_AREA7 is not selected to be
// written. 1: RAM_AREA7 is
// selected to be written. Writing
// to multiple RAM locations is
// possible only when the selected
// RAM areas are sequential. Keys
// that require more than one RAM
// locations (key size is 192 or
// 256 bits), must start at one of
// the following areas: RAM_AREA0,
// RAM_AREA2, RAM_AREA4, or
// RAM_AREA6.
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA7_M \
0x00000080
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA7_S 7
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA6 \
0x00000040 // Each RAM_AREAx represents an
// area of 128 bits. Select the key
// store RAM area(s) where the
// key(s) needs to be written 0:
// RAM_AREA6 is not selected to be
// written. 1: RAM_AREA6 is
// selected to be written. Writing
// to multiple RAM locations is
// possible only when the selected
// RAM areas are sequential. Keys
// that require more than one RAM
// locations (key size is 192 or
// 256 bits), must start at one of
// the following areas: RAM_AREA0,
// RAM_AREA2, RAM_AREA4, or
// RAM_AREA6.
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA6_M \
0x00000040
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA6_S 6
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA5 \
0x00000020 // Each RAM_AREAx represents an
// area of 128 bits. Select the key
// store RAM area(s) where the
// key(s) needs to be written 0:
// RAM_AREA5 is not selected to be
// written. 1: RAM_AREA5 is
// selected to be written. Writing
// to multiple RAM locations is
// possible only when the selected
// RAM areas are sequential. Keys
// that require more than one RAM
// locations (key size is 192 or
// 256 bits), must start at one of
// the following areas: RAM_AREA0,
// RAM_AREA2, RAM_AREA4, or
// RAM_AREA6.
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA5_M \
0x00000020
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA5_S 5
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA4 \
0x00000010 // Each RAM_AREAx represents an
// area of 128 bits. Select the key
// store RAM area(s) where the
// key(s) needs to be written 0:
// RAM_AREA4 is not selected to be
// written. 1: RAM_AREA4 is
// selected to be written. Writing
// to multiple RAM locations is
// possible only when the selected
// RAM areas are sequential. Keys
// that require more than one RAM
// locations (key size is 192 or
// 256 bits), must start at one of
// the following areas: RAM_AREA0,
// RAM_AREA2, RAM_AREA4, or
// RAM_AREA6.
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA4_M \
0x00000010
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA4_S 4
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA3 \
0x00000008 // Each RAM_AREAx represents an
// area of 128 bits. Select the key
// store RAM area(s) where the
// key(s) needs to be written 0:
// RAM_AREA3 is not selected to be
// written. 1: RAM_AREA3 is
// selected to be written. Writing
// to multiple RAM locations is
// possible only when the selected
// RAM areas are sequential. Keys
// that require more than one RAM
// locations (key size is 192 or
// 256 bits), must start at one of
// the following areas: RAM_AREA0,
// RAM_AREA2, RAM_AREA4, or
// RAM_AREA6.
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA3_M \
0x00000008
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA3_S 3
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA2 \
0x00000004 // Each RAM_AREAx represents an
// area of 128 bits. Select the key
// store RAM area(s) where the
// key(s) needs to be written 0:
// RAM_AREA2 is not selected to be
// written. 1: RAM_AREA2 is
// selected to be written. Writing
// to multiple RAM locations is
// possible only when the selected
// RAM areas are sequential. Keys
// that require more than one RAM
// locations (key size is 192 or
// 256 bits), must start at one of
// the following areas: RAM_AREA0,
// RAM_AREA2, RAM_AREA4, or
// RAM_AREA6.
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA2_M \
0x00000004
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA2_S 2
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA1 \
0x00000002 // Each RAM_AREAx represents an
// area of 128 bits. Select the key
// store RAM area(s) where the
// key(s) needs to be written 0:
// RAM_AREA1 is not selected to be
// written. 1: RAM_AREA1 is
// selected to be written. Writing
// to multiple RAM locations is
// possible only when the selected
// RAM areas are sequential. Keys
// that require more than one RAM
// locations (key size is 192 or
// 256 bits), must start at one of
// the following areas: RAM_AREA0,
// RAM_AREA2, RAM_AREA4, or
// RAM_AREA6.
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA1_M \
0x00000002
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA1_S 1
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA0 \
0x00000001 // Each RAM_AREAx represents an
// area of 128 bits. Select the key
// store RAM area(s) where the
// key(s) needs to be written 0:
// RAM_AREA0 is not selected to be
// written. 1: RAM_AREA0 is
// selected to be written. Writing
// to multiple RAM locations is
// possible only when the selected
// RAM areas are sequential. Keys
// that require more than one RAM
// locations (key size is 192 or
// 256 bits), must start at one of
// the following areas: RAM_AREA0,
// RAM_AREA2, RAM_AREA4, or
// RAM_AREA6.
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA0_M \
0x00000001
#define AES_KEY_STORE_WRITE_AREA_RAM_AREA0_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_KEY_STORE_WRITTEN_AREA register.
//
//*****************************************************************************
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN7 \
0x00000080 // Read operation: 0: This RAM
// area is not written with valid
// key information. 1: This RAM
// area is written with valid key
// information. Each individual
// ram_area_writtenx bit can be
// reset by writing 1. Note: This
// register is reset on a soft
// reset from the master control
// module. After a soft reset, all
// keys must be rewritten to the
// key store memory.
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN7_M \
0x00000080
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN7_S 7
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN6 \
0x00000040 // Read operation: 0: This RAM
// area is not written with valid
// key information. 1: This RAM
// area is written with valid key
// information. Each individual
// ram_area_writtenx bit can be
// reset by writing 1. Note: This
// register is reset on a soft
// reset from the master control
// module. After a soft reset, all
// keys must be rewritten to the
// key store memory.
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN6_M \
0x00000040
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN6_S 6
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN5 \
0x00000020 // Read operation: 0: This RAM
// area is not written with valid
// key information. 1: This RAM
// area is written with valid key
// information. Each individual
// ram_area_writtenx bit can be
// reset by writing 1. Note: This
// register is reset on a soft
// reset from the master control
// module. After a soft reset, all
// keys must be rewritten to the
// key store memory.
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN5_M \
0x00000020
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN5_S 5
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN4 \
0x00000010 // Read operation: 0: This RAM
// area is not written with valid
// key information. 1: This RAM
// area is written with valid key
// information. Each individual
// ram_area_writtenx bit can be
// reset by writing 1. Note: This
// register is reset on a soft
// reset from the master control
// module. After a soft reset, all
// keys must be rewritten to the
// key store memory.
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN4_M \
0x00000010
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN4_S 4
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN3 \
0x00000008 // Read operation: 0: This RAM
// area is not written with valid
// key information. 1: This RAM
// area is written with valid key
// information. Each individual
// ram_area_writtenx bit can be
// reset by writing 1. Note: This
// register is reset on a soft
// reset from the master control
// module. After a soft reset, all
// keys must be rewritten to the
// key store memory.
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN3_M \
0x00000008
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN3_S 3
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN2 \
0x00000004 // Read operation: 0: This RAM
// area is not written with valid
// key information. 1: This RAM
// area is written with valid key
// information. Each individual
// ram_area_writtenx bit can be
// reset by writing 1. Note: This
// register is reset on a soft
// reset from the master control
// module. After a soft reset, all
// keys must be rewritten to the
// key store memory.
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN2_M \
0x00000004
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN2_S 2
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN1 \
0x00000002 // Read operation: 0: This RAM
// area is not written with valid
// key information. 1: This RAM
// area is written with valid key
// information. Each individual
// ram_area_writtenx bit can be
// reset by writing 1. Note: This
// register is reset on a soft
// reset from the master control
// module. After a soft reset, all
// keys must be rewritten to the
// key store memory.
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN1_M \
0x00000002
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN1_S 1
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN0 \
0x00000001 // Read operation: 0: This RAM
// area is not written with valid
// key information. 1: This RAM
// area is written with valid key
// information. Each individual
// ram_area_writtenx bit can be
// reset by writing 1. Note: This
// register is reset on a soft
// reset from the master control
// module. After a soft reset, all
// keys must be rewritten to the
// key store memory.
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN0_M \
0x00000001
#define AES_KEY_STORE_WRITTEN_AREA_RAM_AREA_WRITTEN0_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_KEY_STORE_SIZE register.
//
//*****************************************************************************
#define AES_KEY_STORE_SIZE_KEY_SIZE_M \
0x00000003 // Key size: 00: Reserved 01: 128
// bits 10: 192 bits 11: 256 bits
// When writing this to this
// register, the
// KEY_STORE_WRITTEN_AREA register
// is reset.
#define AES_KEY_STORE_SIZE_KEY_SIZE_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_KEY_STORE_READ_AREA register.
//
//*****************************************************************************
#define AES_KEY_STORE_READ_AREA_BUSY \
0x80000000 // Key store operation busy status
// flag (read only): 0: Operation
// is complete. 1: Operation is not
// completed and the key store is
// busy.
#define AES_KEY_STORE_READ_AREA_BUSY_M \
0x80000000
#define AES_KEY_STORE_READ_AREA_BUSY_S 31
#define AES_KEY_STORE_READ_AREA_RAM_AREA_M \
0x0000000F // Selects the area of the key
// store RAM from where the key
// needs to be read that will be
// writen to the AES engine
// RAM_AREA: 0000: RAM_AREA0 0001:
// RAM_AREA1 0010: RAM_AREA2 0011:
// RAM_AREA3 0100: RAM_AREA4 0101:
// RAM_AREA5 0110: RAM_AREA6 0111:
// RAM_AREA7 1000: no RAM area
// selected 1001-1111: Reserved RAM
// areas RAM_AREA0, RAM_AREA2,
// RAM_AREA4 and RAM_AREA6 are the
// only valid read areas for 192
// and 256 bits key sizes. Only RAM
// areas that contain valid written
// keys can be selected.
#define AES_KEY_STORE_READ_AREA_RAM_AREA_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_AES_KEY2_0 register.
//
//*****************************************************************************
#define AES_AES_KEY2_0_AES_KEY2_M \
0xFFFFFFFF // AES_KEY2/AES_GHASH_H[31:0] For
// GCM: -[127:0] - GHASH_H - The
// internally calculated GHASH key
// is stored in these registers.
// Only used for modes that use the
// GHASH function (GCM). -[255:128]
// - This register is used to store
// intermediate values and is
// initialized with 0s when loading
// a new key. For CCM: -[255:0] -
// This register is used to store
// intermediate values. For
// CBC-MAC: -[255:0] - ZEROES -
// This register must remain 0.
#define AES_AES_KEY2_0_AES_KEY2_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_AES_KEY2_1 register.
//
//*****************************************************************************
#define AES_AES_KEY2_1_AES_KEY2_M \
0xFFFFFFFF // AES_KEY2/AES_GHASH_H[63:32] For
// GCM: -[127:0] - GHASH_H - The
// internally calculated GHASH key
// is stored in these registers.
// Only used for modes that use the
// GHASH function (GCM). -[255:128]
// - This register is used to store
// intermediate values and is
// initialized with 0s when loading
// a new key. For CCM: -[255:0] -
// This register is used to store
// intermediate values. For
// CBC-MAC: -[255:0] - ZEROES -
// This register must remain 0.
#define AES_AES_KEY2_1_AES_KEY2_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_AES_KEY2_2 register.
//
//*****************************************************************************
#define AES_AES_KEY2_2_AES_KEY2_M \
0xFFFFFFFF // AES_KEY2/AES_GHASH_H[95:64] For
// GCM: -[127:0] - GHASH_H - The
// internally calculated GHASH key
// is stored in these registers.
// Only used for modes that use the
// GHASH function (GCM). -[255:128]
// - This register is used to store
// intermediate values and is
// initialized with 0s when loading
// a new key. For CCM: -[255:0] -
// This register is used to store
// intermediate values. For
// CBC-MAC: -[255:0] - ZEROES -
// This register must remain 0.
#define AES_AES_KEY2_2_AES_KEY2_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_AES_KEY2_3 register.
//
//*****************************************************************************
#define AES_AES_KEY2_3_AES_KEY2_M \
0xFFFFFFFF // AES_KEY2/AES_GHASH_H[127:96]
// For GCM: -[127:0] - GHASH_H -
// The internally calculated GHASH
// key is stored in these
// registers. Only used for modes
// that use the GHASH function
// (GCM). -[255:128] - This
// register is used to store
// intermediate values and is
// initialized with 0s when loading
// a new key. For CCM: -[255:0] -
// This register is used to store
// intermediate values. For
// CBC-MAC: -[255:0] - ZEROES -
// This register must remain 0.
#define AES_AES_KEY2_3_AES_KEY2_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_AES_KEY3_0 register.
//
//*****************************************************************************
#define AES_AES_KEY3_0_AES_KEY3_M \
0xFFFFFFFF //
// AES_KEY3[31:0]/AES_KEY2[159:128]
// For GCM: -[127:0] - GHASH_H -
// The internally calculated GHASH
// key is stored in these
// registers. Only used for modes
// that use the GHASH function
// (GCM). -[255:128] - This
// register is used to store
// intermediate values and is
// initialized with 0s when loading
// a new key. For CCM: -[255:0] -
// This register is used to store
// intermediate values. For
// CBC-MAC: -[255:0] - ZEROES -
// This register must remain 0.
#define AES_AES_KEY3_0_AES_KEY3_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_AES_KEY3_1 register.
//
//*****************************************************************************
#define AES_AES_KEY3_1_AES_KEY3_M \
0xFFFFFFFF //
// AES_KEY3[63:32]/AES_KEY2[191:160]
// For GCM: -[127:0] - GHASH_H -
// The internally calculated GHASH
// key is stored in these
// registers. Only used for modes
// that use the GHASH function
// (GCM). -[255:128] - This
// register is used to store
// intermediate values and is
// initialized with 0s when loading
// a new key. For CCM: -[255:0] -
// This register is used to store
// intermediate values. For
// CBC-MAC: -[255:0] - ZEROES -
// This register must remain 0.
#define AES_AES_KEY3_1_AES_KEY3_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_AES_KEY3_2 register.
//
//*****************************************************************************
#define AES_AES_KEY3_2_AES_KEY3_M \
0xFFFFFFFF //
// AES_KEY3[95:64]/AES_KEY2[223:192]
// For GCM: -[127:0] - GHASH_H -
// The internally calculated GHASH
// key is stored in these
// registers. Only used for modes
// that use the GHASH function
// (GCM). -[255:128] - This
// register is used to store
// intermediate values and is
// initialized with 0s when loading
// a new key. For CCM: -[255:0] -
// This register is used to store
// intermediate values. For
// CBC-MAC: -[255:0] - ZEROES -
// This register must remain 0.
#define AES_AES_KEY3_2_AES_KEY3_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_AES_KEY3_3 register.
//
//*****************************************************************************
#define AES_AES_KEY3_3_AES_KEY3_M \
0xFFFFFFFF //
// AES_KEY3[127:96]/AES_KEY2[255:224]
// For GCM: -[127:0] - GHASH_H -
// The internally calculated GHASH
// key is stored in these
// registers. Only used for modes
// that use the GHASH function
// (GCM). -[255:128] - This
// register is used to store
// intermediate values and is
// initialized with 0s when loading
// a new key. For CCM: -[255:0] -
// This register is used to store
// intermediate values. For
// CBC-MAC: -[255:0] - ZEROES -
// This register must remain 0.
#define AES_AES_KEY3_3_AES_KEY3_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the AES_AES_IV_0 register.
//
//*****************************************************************************
#define AES_AES_IV_0_AES_IV_M 0xFFFFFFFF // AES_IV[31:0] Initialization
// vector Used for regular non-ECB
// modes (CBC/CTR): -[127:0] -
// AES_IV - For regular AES
// operations (CBC and CTR) these
// registers must be written with a
// new 128-bit IV. After an
// operation, these registers
// contain the latest 128-bit
// result IV, generated by the
// EIP-120t. If CTR mode is
// selected, this value is
// incremented with 0x1: After
// first use - When a new data
// block is submitted to the engine
// For GCM: -[127:0] - AES_IV - For
// GCM operations, these registers
// must be written with a new
// 128-bit IV. After an operation,
// these registers contain the
// updated 128-bit result IV,
// generated by the EIP-120t. Note
// that bits [127:96] of the IV
// represent the initial counter
// value (which is 1 for GCM) and
// must therefore be initialized to
// 0x01000000. This value is
// incremented with 0x1: After
// first use - When a new data
// block is submitted to the
// engine. For CCM: -[127:0] - A0:
// For CCM this field must be
// written with value A0, this
// value is the concatenation of:
// A0-flags (5-bits of 0 and 3-bits
// 'L'), Nonce and counter value.
// 'L' must be a copy from the 'L'
// value of the AES_CTRL register.
// This 'L' indicates the width of
// the Nonce and counter. The
// loaded counter must be
// initialized to 0. The total
// width of A0 is 128-bit. For
// CBC-MAC: -[127:0] - Zeroes - For
// CBC-MAC this register must be
// written with 0s at the start of
// each operation. After an
// operation, these registers
// contain the 128-bit TAG output,
// generated by the EIP-120t.
#define AES_AES_IV_0_AES_IV_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the AES_AES_IV_1 register.
//
//*****************************************************************************
#define AES_AES_IV_1_AES_IV_M 0xFFFFFFFF // AES_IV[63:32] Initialization
// vector Used for regular non-ECB
// modes (CBC/CTR): -[127:0] -
// AES_IV - For regular AES
// operations (CBC and CTR) these
// registers must be written with a
// new 128-bit IV. After an
// operation, these registers
// contain the latest 128-bit
// result IV, generated by the
// EIP-120t. If CTR mode is
// selected, this value is
// incremented with 0x1: After
// first use - When a new data
// block is submitted to the engine
// For GCM: -[127:0] - AES_IV - For
// GCM operations, these registers
// must be written with a new
// 128-bit IV. After an operation,
// these registers contain the
// updated 128-bit result IV,
// generated by the EIP-120t. Note
// that bits [127:96] of the IV
// represent the initial counter
// value (which is 1 for GCM) and
// must therefore be initialized to
// 0x01000000. This value is
// incremented with 0x1: After
// first use - When a new data
// block is submitted to the
// engine. For CCM: -[127:0] - A0:
// For CCM this field must be
// written with value A0, this
// value is the concatenation of:
// A0-flags (5-bits of 0 and 3-bits
// 'L'), Nonce and counter value.
// 'L' must be a copy from the 'L'
// value of the AES_CTRL register.
// This 'L' indicates the width of
// the Nonce and counter. The
// loaded counter must be
// initialized to 0. The total
// width of A0 is 128-bit. For
// CBC-MAC: -[127:0] - Zeroes - For
// CBC-MAC this register must be
// written with 0s at the start of
// each operation. After an
// operation, these registers
// contain the 128-bit TAG output,
// generated by the EIP-120t.
#define AES_AES_IV_1_AES_IV_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the AES_AES_IV_2 register.
//
//*****************************************************************************
#define AES_AES_IV_2_AES_IV_M 0xFFFFFFFF // AES_IV[95:64] Initialization
// vector Used for regular non-ECB
// modes (CBC/CTR): -[127:0] -
// AES_IV - For regular AES
// operations (CBC and CTR) these
// registers must be written with a
// new 128-bit IV. After an
// operation, these registers
// contain the latest 128-bit
// result IV, generated by the
// EIP-120t. If CTR mode is
// selected, this value is
// incremented with 0x1: After
// first use - When a new data
// block is submitted to the engine
// For GCM: -[127:0] - AES_IV - For
// GCM operations, these registers
// must be written with a new
// 128-bit IV. After an operation,
// these registers contain the
// updated 128-bit result IV,
// generated by the EIP-120t. Note
// that bits [127:96] of the IV
// represent the initial counter
// value (which is 1 for GCM) and
// must therefore be initialized to
// 0x01000000. This value is
// incremented with 0x1: After
// first use - When a new data
// block is submitted to the
// engine. For CCM: -[127:0] - A0:
// For CCM this field must be
// written with value A0, this
// value is the concatenation of:
// A0-flags (5-bits of 0 and 3-bits
// 'L'), Nonce and counter value.
// 'L' must be a copy from the 'L'
// value of the AES_CTRL register.
// This 'L' indicates the width of
// the Nonce and counter. The
// loaded counter must be
// initialized to 0. The total
// width of A0 is 128-bit. For
// CBC-MAC: -[127:0] - Zeroes - For
// CBC-MAC this register must be
// written with 0s at the start of
// each operation. After an
// operation, these registers
// contain the 128-bit TAG output,
// generated by the EIP-120t.
#define AES_AES_IV_2_AES_IV_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the AES_AES_IV_3 register.
//
//*****************************************************************************
#define AES_AES_IV_3_AES_IV_M 0xFFFFFFFF // AES_IV[127:96] Initialization
// vector Used for regular non-ECB
// modes (CBC/CTR): -[127:0] -
// AES_IV - For regular AES
// operations (CBC and CTR) these
// registers must be written with a
// new 128-bit IV. After an
// operation, these registers
// contain the latest 128-bit
// result IV, generated by the
// EIP-120t. If CTR mode is
// selected, this value is
// incremented with 0x1: After
// first use - When a new data
// block is submitted to the engine
// For GCM: -[127:0] - AES_IV - For
// GCM operations, these registers
// must be written with a new
// 128-bit IV. After an operation,
// these registers contain the
// updated 128-bit result IV,
// generated by the EIP-120t. Note
// that bits [127:96] of the IV
// represent the initial counter
// value (which is 1 for GCM) and
// must therefore be initialized to
// 0x01000000. This value is
// incremented with 0x1: After
// first use - When a new data
// block is submitted to the
// engine. For CCM: -[127:0] - A0:
// For CCM this field must be
// written with value A0, this
// value is the concatenation of:
// A0-flags (5-bits of 0 and 3-bits
// 'L'), Nonce and counter value.
// 'L' must be a copy from the 'L'
// value of the AES_CTRL register.
// This 'L' indicates the width of
// the Nonce and counter. The
// loaded counter must be
// initialized to 0. The total
// width of A0 is 128-bit. For
// CBC-MAC: -[127:0] - Zeroes - For
// CBC-MAC this register must be
// written with 0s at the start of
// each operation. After an
// operation, these registers
// contain the 128-bit TAG output,
// generated by the EIP-120t.
#define AES_AES_IV_3_AES_IV_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the AES_AES_CTRL register.
//
//*****************************************************************************
#define AES_AES_CTRL_context_ready \
0x80000000 // If 1, this read-only status bit
// indicates that the context data
// registers can be overwritten and
// the host is permitted to write
// the next context.
#define AES_AES_CTRL_context_ready_M \
0x80000000
#define AES_AES_CTRL_context_ready_S 31
#define AES_AES_CTRL_saved_context_ready \
0x40000000 // If 1, this status bit indicates
// that an AES authentication TAG
// and/or IV block(s) is/are
// available for the host to
// retrieve. This bit is only
// asserted if the save_context bit
// is set to 1. The bit is mutual
// exclusive with the context_ready
// bit. Writing one clears the bit
// to 0, indicating the AES core
// can start its next operation.
// This bit is also cleared when
// the 4th word of the output TAG
// and/or IV is read. Note: All
// other mode bit writes are
// ignored when this mode bit is
// written with 1. Note: This bit
// is controlled automatically by
// the EIP-120t for TAG read DMA
// operations.
#define AES_AES_CTRL_saved_context_ready_M \
0x40000000
#define AES_AES_CTRL_saved_context_ready_S 30
#define AES_AES_CTRL_save_context \
0x20000000 // This bit indicates that an
// authentication TAG or result IV
// needs to be stored as a result
// context. Typically this bit must
// be set for authentication modes
// returning a TAG (CBC-MAC, GCM
// and CCM), or for basic
// encryption modes that require
// future continuation with the
// current result IV. If this bit
// is set, the engine retains its
// full context until the TAG
// and/or IV registers are read.
// The TAG or IV must be read
// before the AES engine can start
// a new operation.
#define AES_AES_CTRL_save_context_M \
0x20000000
#define AES_AES_CTRL_save_context_S 29
#define AES_AES_CTRL_CCM_M_M 0x01C00000 // Defines M, which indicates the
// length of the authentication
// field for CCM operations; the
// authentication field length
// equals two times (the value of
// CCM-M plus one). Note: The
// EIP-120t always returns a
// 128-bit authentication field, of
// which the M least significant
// bytes are valid. All values are
// supported.
#define AES_AES_CTRL_CCM_M_S 22
#define AES_AES_CTRL_CCM_L_M 0x00380000 // Defines L, which indicates the
// width of the length field for
// CCM operations; the length field
// in bytes equals the value of
// CMM-L plus one. All values are
// supported.
#define AES_AES_CTRL_CCM_L_S 19
#define AES_AES_CTRL_CCM 0x00040000 // If set to 1, AES-CCM is
// selected AES-CCM is a combined
// mode, using AES for
// authentication and encryption.
// Note: Selecting AES-CCM mode
// requires writing of the AAD
// length register after all other
// registers. Note: The CTR mode
// bit in this register must also
// be set to 1 to enable AES-CTR;
// selecting other AES modes than
// CTR mode is invalid.
#define AES_AES_CTRL_CCM_M 0x00040000
#define AES_AES_CTRL_CCM_S 18
#define AES_AES_CTRL_GCM_M 0x00030000 // Set these bits to 11 to select
// AES-GCM mode. AES-GCM is a
// combined mode, using the Galois
// field multiplier GF(2 to the
// power of 128) for authentication
// and AES-CTR mode for encryption.
// Note: The CTR mode bit in this
// register must also be set to 1
// to enable AES-CTR Bit
// combination description: 00 = No
// GCM mode 01 = Reserved, do not
// select 10 = Reserved, do not
// select 11 = Autonomous GHASH
// (both H- and Y0-encrypted
// calculated internally) Note: The
// EIP-120t-1 configuration only
// supports mode 11 (autonomous
// GHASH), other GCM modes are not
// allowed.
#define AES_AES_CTRL_GCM_S 16
#define AES_AES_CTRL_CBC_MAC 0x00008000 // Set to 1 to select AES-CBC MAC
// mode. The direction bit must be
// set to 1 for this mode.
// Selecting this mode requires
// writing the length register
// after all other registers.
#define AES_AES_CTRL_CBC_MAC_M 0x00008000
#define AES_AES_CTRL_CBC_MAC_S 15
#define AES_AES_CTRL_ctr_width_M \
0x00000180 // Specifies the counter width for
// AES-CTR mode 00 = 32-bit counter
// 01 = 64-bit counter 10 = 96-bit
// counter 11 = 128-bit counter
#define AES_AES_CTRL_ctr_width_S 7
#define AES_AES_CTRL_CTR 0x00000040 // If set to 1, AES counter mode
// (CTR) is selected. Note: This
// bit must also be set for GCM and
// CCM, when encryption/decryption
// is required.
#define AES_AES_CTRL_CTR_M 0x00000040
#define AES_AES_CTRL_CTR_S 6
#define AES_AES_CTRL_CBC 0x00000020 // If set to 1,
// cipher-block-chaining (CBC) mode
// is selected.
#define AES_AES_CTRL_CBC_M 0x00000020
#define AES_AES_CTRL_CBC_S 5
#define AES_AES_CTRL_key_size_M 0x00000018 // This read-only field specifies
// the key size. The key size is
// automatically configured when a
// new key is loaded through the
// key store module. 00 = N/A -
// Reserved 01 = 128-bit 10 =
// 192-bit 11 = 256-bit
#define AES_AES_CTRL_key_size_S 3
#define AES_AES_CTRL_direction 0x00000004 // If set to 1 an encrypt
// operation is performed. If set
// to 0 a decrypt operation is
// performed. This bit must be
// written with a 1 when CBC-MAC is
// selected.
#define AES_AES_CTRL_direction_M \
0x00000004
#define AES_AES_CTRL_direction_S 2
#define AES_AES_CTRL_input_ready \
0x00000002 // If 1, this status bit indicates
// that the 16-byte AES input
// buffer is empty. The host is
// permitted to write the next
// block of data. Writing 0 clears
// the bit to 0 and indicates that
// the AES core can use the
// provided input data block.
// Writing 1 to this bit is
// ignored. Note: For DMA
// operations, this bit is
// automatically controlled by the
// EIP-120t. After reset, this bit
// is 0. After writing a context,
// this bit becomes 1.
#define AES_AES_CTRL_input_ready_M \
0x00000002
#define AES_AES_CTRL_input_ready_S 1
#define AES_AES_CTRL_output_ready \
0x00000001 // If 1, this status bit indicates
// that an AES output block is
// available to be retrieved by the
// host. Writing 0 clears the bit
// to 0 and indicates that output
// data is read by the host. The
// AES core can provide a next
// output data block. Writing 1 to
// this bit is ignored. Note: For
// DMA operations, this bit is
// automatically controlled by the
// EIP-120t.
#define AES_AES_CTRL_output_ready_M \
0x00000001
#define AES_AES_CTRL_output_ready_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_AES_C_LENGTH_0 register.
//
//*****************************************************************************
#define AES_AES_C_LENGTH_0_C_LENGTH_M \
0xFFFFFFFF // C_LENGTH[31:0] Bits [60:0] of
// the crypto length registers (LSW
// and MSW) store the cryptographic
// data length in bytes for all
// modes. Once processing with this
// context is started, this length
// decrements to 0. Data lengths up
// to (261: 1) bytes are allowed.
// For GCM, any value up to 236 -
// 32 bytes can be used. This is
// because a 32-bit counter mode is
// used; the maximum number of
// 128-bit blocks is 232 - 2,
// resulting in a maximum number of
// bytes of 236 - 32. A write to
// this register triggers the
// engine to start using this
// context. This is valid for all
// modes except GCM and CCM. Note:
// For the combined modes (GCM and
// CCM), this length does not
// include the authentication only
// data; the authentication length
// is specified in the
// AES_AUTH_LENGTH register below.
// All modes must have a length
// greater than 0. For the combined
// modes, it is allowed to have one
// of the lengths equal to 0. For
// the basic encryption modes (ECB,
// CBC, and CTR) it is allowed to
// program zero to the length
// field; in that case the length
// is assumed infinite. All data
// must be byte (8-bit) aligned for
// stream cipher modes; bit aligned
// data streams are not supported
// by the EIP-120t. For block
// cipher modes, the data length
// must be programmed in multiples
// of the block cipher size, 16
// bytes. For a host read
// operation, these registers
// return all-0s.
#define AES_AES_C_LENGTH_0_C_LENGTH_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_AES_C_LENGTH_1 register.
//
//*****************************************************************************
#define AES_AES_C_LENGTH_1_C_LENGTH_M \
0x1FFFFFFF // C_LENGTH[60:32] Bits [60:0] of
// the crypto length registers (LSW
// and MSW) store the cryptographic
// data length in bytes for all
// modes. Once processing with this
// context is started, this length
// decrements to 0. Data lengths up
// to (261: 1) bytes are allowed.
// For GCM, any value up to 236 -
// 32 bytes can be used. This is
// because a 32-bit counter mode is
// used; the maximum number of
// 128-bit blocks is 232 - 2,
// resulting in a maximum number of
// bytes of 236 - 32. A write to
// this register triggers the
// engine to start using this
// context. This is valid for all
// modes except GCM and CCM. Note:
// For the combined modes (GCM and
// CCM), this length does not
// include the authentication only
// data; the authentication length
// is specified in the
// AES_AUTH_LENGTH register below.
// All modes must have a length
// greater than 0. For the combined
// modes, it is allowed to have one
// of the lengths equal to 0. For
// the basic encryption modes (ECB,
// CBC, and CTR) it is allowed to
// program zero to the length
// field; in that case the length
// is assumed infinite. All data
// must be byte (8-bit) aligned for
// stream cipher modes; bit aligned
// data streams are not supported
// by the EIP-120t. For block
// cipher modes, the data length
// must be programmed in multiples
// of the block cipher size, 16
// bytes. For a host read
// operation, these registers
// return all-0s.
#define AES_AES_C_LENGTH_1_C_LENGTH_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_AES_AUTH_LENGTH register.
//
//*****************************************************************************
#define AES_AES_AUTH_LENGTH_AUTH_LENGTH_M \
0xFFFFFFFF // Bits [31:0] of the
// authentication length register
// store the authentication data
// length in bytes for combined
// modes only (GCM or CCM).
// Supported AAD-lengths for CCM
// are from 0 to (2^16 - 2^8)
// bytes. For GCM any value up to
// (2^32 - 1) bytes can be used.
// Once processing with this
// context is started, this length
// decrements to 0. A write to this
// register triggers the engine to
// start using this context for GCM
// and CCM. For a host read
// operation, these registers
// return all-0s.
#define AES_AES_AUTH_LENGTH_AUTH_LENGTH_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_AES_DATA_IN_OUT_0 register.
//
//*****************************************************************************
#define AES_AES_DATA_IN_OUT_0_AES_DATA_IN_OUT_M \
0xFFFFFFFF // AES input data[31:0] / AES
// output data[31:0] Data registers
// for input/output block data
// to/from the EIP-120t. For normal
// operations, this register is not
// used, since data input and
// output is transferred from and
// to the AES core via DMA. For a
// host write operation, these
// registers must be written with
// the 128-bit input block for the
// next AES operation. Writing at a
// word-aligned offset within this
// address range stores the word (4
// bytes) of data into the
// corresponding position of 4-word
// deep (16 bytes = 128-bit AES
// block) data input buffer. This
// buffer is used for the next AES
// operation. If the last data
// block is not completely filled
// with valid data (see notes
// below), it is allowed to write
// only the words with valid data.
// Next AES operation is triggered
// by writing to the input_ready
// flag of the AES_CTRL register.
// For a host read operation, these
// registers contain the 128-bit
// output block from the latest AES
// operation. Reading from a
// word-aligned offset within this
// address range reads one word (4
// bytes) of data out the 4-word
// deep (16 bytes = 128-bits AES
// block) data output buffer. The
// words (4 words, one full block)
// should be read before the core
// will move the next block to the
// data output buffer. To empty the
// data output buffer, the
// output_ready flag of the
// AES_CTRL register must be
// written. For the modes with
// authentication (CBC-MAC, GCM and
// CCM), the invalid (message)
// bytes/words can be written with
// any data. Note: AES typically
// operates on 128 bits block
// multiple input data. The CTR,
// GCM and CCM modes form an
// exception. The last block of a
// CTR-mode message may contain
// less than 128 bits (refer to
// [NIST 800-38A]). For GCM/CCM,
// the last block of both AAD and
// message data may contain less
// than 128 bits (refer to [NIST
// 800-38D]). The EIP-120t
// automatically pads or masks
// misaligned ending data blocks
// with 0s for GCM, CCM and
// CBC-MAC. For CTR mode, the
// remaining data in an unaligned
// data block is ignored. Note: The
// AAD / authentication only data
// is not copied to the output
// buffer but only used for
// authentication.
#define AES_AES_DATA_IN_OUT_0_AES_DATA_IN_OUT_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_AES_DATA_IN_OUT_1 register.
//
//*****************************************************************************
#define AES_AES_DATA_IN_OUT_1_AES_DATA_IN_OUT_M \
0xFFFFFFFF // AES input data[63:32] / AES
// output data[63:32] Data
// registers for input/output block
// data to/from the EIP-120t. For
// normal operations, this register
// is not used, since data input
// and output is transferred from
// and to the AES core via DMA. For
// a host write operation, these
// registers must be written with
// the 128-bit input block for the
// next AES operation. Writing at a
// word-aligned offset within this
// address range stores the word (4
// bytes) of data into the
// corresponding position of 4-word
// deep (16 bytes = 128-bit AES
// block) data input buffer. This
// buffer is used for the next AES
// operation. If the last data
// block is not completely filled
// with valid data (see notes
// below), it is allowed to write
// only the words with valid data.
// Next AES operation is triggered
// by writing to the input_ready
// flag of the AES_CTRL register.
// For a host read operation, these
// registers contain the 128-bit
// output block from the latest AES
// operation. Reading from a
// word-aligned offset within this
// address range reads one word (4
// bytes) of data out the 4-word
// deep (16 bytes = 128-bits AES
// block) data output buffer. The
// words (4 words, one full block)
// should be read before the core
// will move the next block to the
// data output buffer. To empty the
// data output buffer, the
// output_ready flag of the
// AES_CTRL register must be
// written. For the modes with
// authentication (CBC-MAC, GCM and
// CCM), the invalid (message)
// bytes/words can be written with
// any data. Note: AES typically
// operates on 128 bits block
// multiple input data. The CTR,
// GCM and CCM modes form an
// exception. The last block of a
// CTR-mode message may contain
// less than 128 bits (refer to
// [NIST 800-38A]). For GCM/CCM,
// the last block of both AAD and
// message data may contain less
// than 128 bits (refer to [NIST
// 800-38D]). The EIP-120t
// automatically pads or masks
// misaligned ending data blocks
// with 0s for GCM, CCM and
// CBC-MAC. For CTR mode, the
// remaining data in an unaligned
// data block is ignored. Note: The
// AAD / authentication only data
// is not copied to the output
// buffer but only used for
// authentication.
#define AES_AES_DATA_IN_OUT_1_AES_DATA_IN_OUT_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_AES_DATA_IN_OUT_2 register.
//
//*****************************************************************************
#define AES_AES_DATA_IN_OUT_2_AES_DATA_IN_OUT_M \
0xFFFFFFFF // AES input data[95:64] / AES
// output data[95:64] Data
// registers for input/output block
// data to/from the EIP-120t. For
// normal operations, this register
// is not used, since data input
// and output is transferred from
// and to the AES core via DMA. For
// a host write operation, these
// registers must be written with
// the 128-bit input block for the
// next AES operation. Writing at a
// word-aligned offset within this
// address range stores the word (4
// bytes) of data into the
// corresponding position of 4-word
// deep (16 bytes = 128-bit AES
// block) data input buffer. This
// buffer is used for the next AES
// operation. If the last data
// block is not completely filled
// with valid data (see notes
// below), it is allowed to write
// only the words with valid data.
// Next AES operation is triggered
// by writing to the input_ready
// flag of the AES_CTRL register.
// For a host read operation, these
// registers contain the 128-bit
// output block from the latest AES
// operation. Reading from a
// word-aligned offset within this
// address range reads one word (4
// bytes) of data out the 4-word
// deep (16 bytes = 128-bits AES
// block) data output buffer. The
// words (4 words, one full block)
// should be read before the core
// will move the next block to the
// data output buffer. To empty the
// data output buffer, the
// output_ready flag of the
// AES_CTRL register must be
// written. For the modes with
// authentication (CBC-MAC, GCM and
// CCM), the invalid (message)
// bytes/words can be written with
// any data. Note: AES typically
// operates on 128 bits block
// multiple input data. The CTR,
// GCM and CCM modes form an
// exception. The last block of a
// CTR-mode message may contain
// less than 128 bits (refer to
// [NIST 800-38A]). For GCM/CCM,
// the last block of both AAD and
// message data may contain less
// than 128 bits (refer to [NIST
// 800-38D]). The EIP-120t
// automatically pads or masks
// misaligned ending data blocks
// with 0s for GCM, CCM and
// CBC-MAC. For CTR mode, the
// remaining data in an unaligned
// data block is ignored. Note: The
// AAD / authentication only data
// is not copied to the output
// buffer but only used for
// authentication.
#define AES_AES_DATA_IN_OUT_2_AES_DATA_IN_OUT_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_AES_DATA_IN_OUT_3 register.
//
//*****************************************************************************
#define AES_AES_DATA_IN_OUT_3_AES_DATA_IN_OUT_M \
0xFFFFFFFF // AES input data[127:96] / AES
// output data[127:96] Data
// registers for input/output block
// data to/from the EIP-120t. For
// normal operations, this register
// is not used, since data input
// and output is transferred from
// and to the AES core via DMA. For
// a host write operation, these
// registers must be written with
// the 128-bit input block for the
// next AES operation. Writing at a
// word-aligned offset within this
// address range stores the word (4
// bytes) of data into the
// corresponding position of 4-word
// deep (16 bytes = 128-bit AES
// block) data input buffer. This
// buffer is used for the next AES
// operation. If the last data
// block is not completely filled
// with valid data (see notes
// below), it is allowed to write
// only the words with valid data.
// Next AES operation is triggered
// by writing to the input_ready
// flag of the AES_CTRL register.
// For a host read operation, these
// registers contain the 128-bit
// output block from the latest AES
// operation. Reading from a
// word-aligned offset within this
// address range reads one word (4
// bytes) of data out the 4-word
// deep (16 bytes = 128-bits AES
// block) data output buffer. The
// words (4 words, one full block)
// should be read before the core
// will move the next block to the
// data output buffer. To empty the
// data output buffer, the
// output_ready flag of the
// AES_CTRL register must be
// written. For the modes with
// authentication (CBC-MAC, GCM and
// CCM), the invalid (message)
// bytes/words can be written with
// any data. Note: AES typically
// operates on 128 bits block
// multiple input data. The CTR,
// GCM and CCM modes form an
// exception. The last block of a
// CTR-mode message may contain
// less than 128 bits (refer to
// [NIST 800-38A]). For GCM/CCM,
// the last block of both AAD and
// message data may contain less
// than 128 bits (refer to [NIST
// 800-38D]). The EIP-120t
// automatically pads or masks
// misaligned ending data blocks
// with 0s for GCM, CCM and
// CBC-MAC. For CTR mode, the
// remaining data in an unaligned
// data block is ignored. Note: The
// AAD / authentication only data
// is not copied to the output
// buffer but only used for
// authentication.
#define AES_AES_DATA_IN_OUT_3_AES_DATA_IN_OUT_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_AES_TAG_OUT_0 register.
//
//*****************************************************************************
#define AES_AES_TAG_OUT_0_AES_TAG_M \
0xFFFFFFFF // AES_TAG[31:0] Bits [31:0] of
// the AES_TAG registers store the
// authentication value for the
// combined and authentication only
// modes. For a host read
// operation, these registers
// contain the last 128-bit TAG
// output of the EIP-120t; the TAG
// is available until the next
// context is written. This
// register will only contain valid
// data if the TAG is available and
// when the store_ready bit from
// AES_CTRL register is set. During
// processing or for
// operations/modes that do not
// return a TAG, reads from this
// register return data from the IV
// register.
#define AES_AES_TAG_OUT_0_AES_TAG_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_AES_TAG_OUT_1 register.
//
//*****************************************************************************
#define AES_AES_TAG_OUT_1_AES_TAG_M \
0xFFFFFFFF // AES_TAG[63:32] For a host read
// operation, these registers
// contain the last 128-bit TAG
// output of the EIP-120t; the TAG
// is available until the next
// context is written. This
// register contains valid data
// only if the TAG is available and
// when the store_ready bit from
// AES_CTRL register is set. During
// processing or for
// operations/modes that do not
// return a TAG, reads from this
// register return data from the IV
// register.
#define AES_AES_TAG_OUT_1_AES_TAG_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_AES_TAG_OUT_2 register.
//
//*****************************************************************************
#define AES_AES_TAG_OUT_2_AES_TAG_M \
0xFFFFFFFF // AES_TAG[95:64] For a host read
// operation, these registers
// contain the last 128-bit TAG
// output of the EIP-120t; the TAG
// is available until the next
// context is written. This
// register contains valid data
// only if the TAG is available and
// when the store_ready bit from
// AES_CTRL register is set. During
// processing or for
// operations/modes that do not
// return a TAG, reads from this
// register return data from the IV
// register.
#define AES_AES_TAG_OUT_2_AES_TAG_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_AES_TAG_OUT_3 register.
//
//*****************************************************************************
#define AES_AES_TAG_OUT_3_AES_TAG_M \
0xFFFFFFFF // AES_TAG[127:96] For a host read
// operation, these registers
// contain the last 128-bit TAG
// output of the EIP-120t; the TAG
// is available until the next
// context is written. This
// register contains valid data
// only if the TAG is available and
// when the store_ready bit from
// AES_CTRL register is set. During
// processing or for
// operations/modes that do not
// return a TAG, reads from this
// register return data from the IV
// register.
#define AES_AES_TAG_OUT_3_AES_TAG_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DATA_IN_0 register.
//
//*****************************************************************************
#define AES_HASH_DATA_IN_0_HASH_DATA_IN_M \
0xFFFFFFFF // HASH_DATA_IN[31:0] These
// registers must be written with
// the 512-bit input data. The data
// lines are connected directly to
// the data input of the hash
// module and hence into the
// engine's internal data buffer.
// Writing to each of the registers
// triggers a corresponding 32-bit
// write enable to the internal
// buffer. Note: The host may only
// write the input data buffer when
// the rfd_in bit of the
// HASH_IO_BUF_CTRL register is
// high. If the rfd_in bit is 0,
// the engine is busy with
// processing. During processing,
// it is not allowed to write new
// input data. For message lengths
// larger than 64 bytes, multiple
// blocks of data are written to
// this input buffer using a
// handshake through flags of the
// HASH_IO_BUF_CTRL register. All
// blocks except the last are
// required to be 512 bits in size.
// If the last block is not 512
// bits long, only the least
// significant bits of data must be
// written, but they must be padded
// with 0s to the next 32-bit
// boundary. Host read operations
// from these register addresses
// return 0s.
#define AES_HASH_DATA_IN_0_HASH_DATA_IN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DATA_IN_1 register.
//
//*****************************************************************************
#define AES_HASH_DATA_IN_1_HASH_DATA_IN_M \
0xFFFFFFFF // HASH_DATA_IN[63:32] These
// registers must be written with
// the 512-bit input data. The data
// lines are connected directly to
// the data input of the hash
// module and hence into the
// engine's internal data buffer.
// Writing to each of the registers
// triggers a corresponding 32-bit
// write enable to the internal
// buffer. Note: The host may only
// write the input data buffer when
// the rfd_in bit of the
// HASH_IO_BUF_CTRL register is
// high. If the rfd_in bit is 0,
// the engine is busy with
// processing. During processing,
// it is not allowed to write new
// input data. For message lengths
// larger than 64 bytes, multiple
// blocks of data are written to
// this input buffer using a
// handshake through flags of the
// HASH_IO_BUF_CTRL register. All
// blocks except the last are
// required to be 512 bits in size.
// If the last block is not 512
// bits long, only the least
// significant bits of data must be
// written, but they must be padded
// with 0s to the next 32-bit
// boundary. Host read operations
// from these register addresses
// return 0s.
#define AES_HASH_DATA_IN_1_HASH_DATA_IN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DATA_IN_2 register.
//
//*****************************************************************************
#define AES_HASH_DATA_IN_2_HASH_DATA_IN_M \
0xFFFFFFFF // HASH_DATA_IN[95:64] These
// registers must be written with
// the 512-bit input data. The data
// lines are connected directly to
// the data input of the hash
// module and hence into the
// engine's internal data buffer.
// Writing to each of the registers
// triggers a corresponding 32-bit
// write enable to the internal
// buffer. Note: The host may only
// write the input data buffer when
// the rfd_in bit of the
// HASH_IO_BUF_CTRL register is
// high. If the rfd_in bit is 0,
// the engine is busy with
// processing. During processing,
// it is not allowed to write new
// input data. For message lengths
// larger than 64 bytes, multiple
// blocks of data are written to
// this input buffer using a
// handshake through flags of the
// HASH_IO_BUF_CTRL register. All
// blocks except the last are
// required to be 512 bits in size.
// If the last block is not 512
// bits long, only the least
// significant bits of data must be
// written, but they must be padded
// with 0s to the next 32-bit
// boundary. Host read operations
// from these register addresses
// return 0s.
#define AES_HASH_DATA_IN_2_HASH_DATA_IN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DATA_IN_3 register.
//
//*****************************************************************************
#define AES_HASH_DATA_IN_3_HASH_DATA_IN_M \
0xFFFFFFFF // HASH_DATA_IN[127:96] These
// registers must be written with
// the 512-bit input data. The data
// lines are connected directly to
// the data input of the hash
// module and hence into the
// engine's internal data buffer.
// Writing to each of the registers
// triggers a corresponding 32-bit
// write enable to the internal
// buffer. Note: The host may only
// write the input data buffer when
// the rfd_in bit of the
// HASH_IO_BUF_CTRL register is
// high. If the rfd_in bit is 0,
// the engine is busy with
// processing. During processing,
// it is not allowed to write new
// input data. For message lengths
// larger than 64 bytes, multiple
// blocks of data are written to
// this input buffer using a
// handshake through flags of the
// HASH_IO_BUF_CTRL register. All
// blocks except the last are
// required to be 512 bits in size.
// If the last block is not 512
// bits long, only the least
// significant bits of data must be
// written, but they must be padded
// with 0s to the next 32-bit
// boundary. Host read operations
// from these register addresses
// return 0s.
#define AES_HASH_DATA_IN_3_HASH_DATA_IN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DATA_IN_4 register.
//
//*****************************************************************************
#define AES_HASH_DATA_IN_4_HASH_DATA_IN_M \
0xFFFFFFFF // HASH_DATA_IN[159:128] These
// registers must be written with
// the 512-bit input data. The data
// lines are connected directly to
// the data input of the hash
// module and hence into the
// engine's internal data buffer.
// Writing to each of the registers
// triggers a corresponding 32-bit
// write enable to the internal
// buffer. Note: The host may only
// write the input data buffer when
// the rfd_in bit of the
// HASH_IO_BUF_CTRL register is
// high. If the rfd_in bit is 0,
// the engine is busy with
// processing. During processing,
// it is not allowed to write new
// input data. For message lengths
// larger than 64 bytes, multiple
// blocks of data are written to
// this input buffer using a
// handshake through flags of the
// HASH_IO_BUF_CTRL register. All
// blocks except the last are
// required to be 512 bits in size.
// If the last block is not 512
// bits long, only the least
// significant bits of data must be
// written, but they must be padded
// with 0s to the next 32-bit
// boundary. Host read operations
// from these register addresses
// return 0s.
#define AES_HASH_DATA_IN_4_HASH_DATA_IN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DATA_IN_5 register.
//
//*****************************************************************************
#define AES_HASH_DATA_IN_5_HASH_DATA_IN_M \
0xFFFFFFFF // HASH_DATA_IN[191:160] These
// registers must be written with
// the 512-bit input data. The data
// lines are connected directly to
// the data input of the hash
// module and hence into the
// engine's internal data buffer.
// Writing to each of the registers
// triggers a corresponding 32-bit
// write enable to the internal
// buffer. Note: The host may only
// write the input data buffer when
// the rfd_in bit of the
// HASH_IO_BUF_CTRL register is
// high. If the rfd_in bit is 0,
// the engine is busy with
// processing. During processing,
// it is not allowed to write new
// input data. For message lengths
// larger than 64 bytes, multiple
// blocks of data are written to
// this input buffer using a
// handshake through flags of the
// HASH_IO_BUF_CTRL register. All
// blocks except the last are
// required to be 512 bits in size.
// If the last block is not 512
// bits long, only the least
// significant bits of data must be
// written, but they must be padded
// with 0s to the next 32-bit
// boundary. Host read operations
// from these register addresses
// return 0s.
#define AES_HASH_DATA_IN_5_HASH_DATA_IN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DATA_IN_6 register.
//
//*****************************************************************************
#define AES_HASH_DATA_IN_6_HASH_DATA_IN_M \
0xFFFFFFFF // HASH_DATA_IN[223:192] These
// registers must be written with
// the 512-bit input data. The data
// lines are connected directly to
// the data input of the hash
// module and hence into the
// engine's internal data buffer.
// Writing to each of the registers
// triggers a corresponding 32-bit
// write enable to the internal
// buffer. Note: The host may only
// write the input data buffer when
// the rfd_in bit of the
// HASH_IO_BUF_CTRL register is
// high. If the rfd_in bit is 0,
// the engine is busy with
// processing. During processing,
// it is not allowed to write new
// input data. For message lengths
// larger than 64 bytes, multiple
// blocks of data are written to
// this input buffer using a
// handshake through flags of the
// HASH_IO_BUF_CTRL register. All
// blocks except the last are
// required to be 512 bits in size.
// If the last block is not 512
// bits long, only the least
// significant bits of data must be
// written, but they must be padded
// with 0s to the next 32-bit
// boundary. Host read operations
// from these register addresses
// return 0s.
#define AES_HASH_DATA_IN_6_HASH_DATA_IN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DATA_IN_7 register.
//
//*****************************************************************************
#define AES_HASH_DATA_IN_7_HASH_DATA_IN_M \
0xFFFFFFFF // HASH_DATA_IN[255:224] These
// registers must be written with
// the 512-bit input data. The data
// lines are connected directly to
// the data input of the hash
// module and hence into the
// engine's internal data buffer.
// Writing to each of the registers
// triggers a corresponding 32-bit
// write enable to the internal
// buffer. Note: The host may only
// write the input data buffer when
// the rfd_in bit of the
// HASH_IO_BUF_CTRL register is
// high. If the rfd_in bit is 0,
// the engine is busy with
// processing. During processing,
// it is not allowed to write new
// input data. For message lengths
// larger than 64 bytes, multiple
// blocks of data are written to
// this input buffer using a
// handshake through flags of the
// HASH_IO_BUF_CTRL register. All
// blocks except the last are
// required to be 512 bits in size.
// If the last block is not 512
// bits long, only the least
// significant bits of data must be
// written, but they must be padded
// with 0s to the next 32-bit
// boundary. Host read operations
// from these register addresses
// return 0s.
#define AES_HASH_DATA_IN_7_HASH_DATA_IN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DATA_IN_8 register.
//
//*****************************************************************************
#define AES_HASH_DATA_IN_8_HASH_DATA_IN_M \
0xFFFFFFFF // HASH_DATA_IN[287:256] These
// registers must be written with
// the 512-bit input data. The data
// lines are connected directly to
// the data input of the hash
// module and hence into the
// engine's internal data buffer.
// Writing to each of the registers
// triggers a corresponding 32-bit
// write enable to the internal
// buffer. Note: The host may only
// write the input data buffer when
// the rfd_in bit of the
// HASH_IO_BUF_CTRL register is
// high. If the rfd_in bit is 0,
// the engine is busy with
// processing. During processing,
// it is not allowed to write new
// input data. For message lengths
// larger than 64 bytes, multiple
// blocks of data are written to
// this input buffer using a
// handshake through flags of the
// HASH_IO_BUF_CTRL register. All
// blocks except the last are
// required to be 512 bits in size.
// If the last block is not 512
// bits long, only the least
// significant bits of data must be
// written, but they must be padded
// with 0s to the next 32-bit
// boundary. Host read operations
// from these register addresses
// return 0s.
#define AES_HASH_DATA_IN_8_HASH_DATA_IN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DATA_IN_9 register.
//
//*****************************************************************************
#define AES_HASH_DATA_IN_9_HASH_DATA_IN_M \
0xFFFFFFFF // HASH_DATA_IN[319:288] These
// registers must be written with
// the 512-bit input data. The data
// lines are connected directly to
// the data input of the hash
// module and hence into the
// engine's internal data buffer.
// Writing to each of the registers
// triggers a corresponding 32-bit
// write enable to the internal
// buffer. Note: The host may only
// write the input data buffer when
// the rfd_in bit of the
// HASH_IO_BUF_CTRL register is
// high. If the rfd_in bit is 0,
// the engine is busy with
// processing. During processing,
// it is not allowed to write new
// input data. For message lengths
// larger than 64 bytes, multiple
// blocks of data are written to
// this input buffer using a
// handshake through flags of the
// HASH_IO_BUF_CTRL register. All
// blocks except the last are
// required to be 512 bits in size.
// If the last block is not 512
// bits long, only the least
// significant bits of data must be
// written, but they must be padded
// with 0s to the next 32-bit
// boundary. Host read operations
// from these register addresses
// return 0s.
#define AES_HASH_DATA_IN_9_HASH_DATA_IN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DATA_IN_10 register.
//
//*****************************************************************************
#define AES_HASH_DATA_IN_10_HASH_DATA_IN_M \
0xFFFFFFFF // HASH_DATA_IN[351:320] These
// registers must be written with
// the 512-bit input data. The data
// lines are connected directly to
// the data input of the hash
// module and hence into the
// engine's internal data buffer.
// Writing to each of the registers
// triggers a corresponding 32-bit
// write enable to the internal
// buffer. Note: The host may only
// write the input data buffer when
// the rfd_in bit of the
// HASH_IO_BUF_CTRL register is
// high. If the rfd_in bit is 0,
// the engine is busy with
// processing. During processing,
// it is not allowed to write new
// input data. For message lengths
// larger than 64 bytes, multiple
// blocks of data are written to
// this input buffer using a
// handshake through flags of the
// HASH_IO_BUF_CTRL register. All
// blocks except the last are
// required to be 512 bits in size.
// If the last block is not 512
// bits long, only the least
// significant bits of data must be
// written, but they must be padded
// with 0s to the next 32-bit
// boundary. Host read operations
// from these register addresses
// return 0s.
#define AES_HASH_DATA_IN_10_HASH_DATA_IN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DATA_IN_11 register.
//
//*****************************************************************************
#define AES_HASH_DATA_IN_11_HASH_DATA_IN_M \
0xFFFFFFFF // HASH_DATA_IN[383:352] These
// registers must be written with
// the 512-bit input data. The data
// lines are connected directly to
// the data input of the hash
// module and hence into the
// engine's internal data buffer.
// Writing to each of the registers
// triggers a corresponding 32-bit
// write enable to the internal
// buffer. Note: The host may only
// write the input data buffer when
// the rfd_in bit of the
// HASH_IO_BUF_CTRL register is
// high. If the rfd_in bit is 0,
// the engine is busy with
// processing. During processing,
// it is not allowed to write new
// input data. For message lengths
// larger than 64 bytes, multiple
// blocks of data are written to
// this input buffer using a
// handshake through flags of the
// HASH_IO_BUF_CTRL register. All
// blocks except the last are
// required to be 512 bits in size.
// If the last block is not 512
// bits long, only the least
// significant bits of data must be
// written, but they must be padded
// with 0s to the next 32-bit
// boundary. Host read operations
// from these register addresses
// return 0s.
#define AES_HASH_DATA_IN_11_HASH_DATA_IN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DATA_IN_12 register.
//
//*****************************************************************************
#define AES_HASH_DATA_IN_12_HASH_DATA_IN_M \
0xFFFFFFFF // HASH_DATA_IN[415:384] These
// registers must be written with
// the 512-bit input data. The data
// lines are connected directly to
// the data input of the hash
// module and hence into the
// engine's internal data buffer.
// Writing to each of the registers
// triggers a corresponding 32-bit
// write enable to the internal
// buffer. Note: The host may only
// write the input data buffer when
// the rfd_in bit of the
// HASH_IO_BUF_CTRL register is
// high. If the rfd_in bit is 0,
// the engine is busy with
// processing. During processing,
// it is not allowed to write new
// input data. For message lengths
// larger than 64 bytes, multiple
// blocks of data are written to
// this input buffer using a
// handshake through flags of the
// HASH_IO_BUF_CTRL register. All
// blocks except the last are
// required to be 512 bits in size.
// If the last block is not 512
// bits long, only the least
// significant bits of data must be
// written, but they must be padded
// with 0s to the next 32-bit
// boundary. Host read operations
// from these register addresses
// return 0s.
#define AES_HASH_DATA_IN_12_HASH_DATA_IN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DATA_IN_13 register.
//
//*****************************************************************************
#define AES_HASH_DATA_IN_13_HASH_DATA_IN_M \
0xFFFFFFFF // HASH_DATA_IN[447:416] These
// registers must be written with
// the 512-bit input data. The data
// lines are connected directly to
// the data input of the hash
// module and hence into the
// engine's internal data buffer.
// Writing to each of the registers
// triggers a corresponding 32-bit
// write enable to the internal
// buffer. Note: The host may only
// write the input data buffer when
// the rfd_in bit of the
// HASH_IO_BUF_CTRL register is
// high. If the rfd_in bit is 0,
// the engine is busy with
// processing. During processing,
// it is not allowed to write new
// input data. For message lengths
// larger than 64 bytes, multiple
// blocks of data are written to
// this input buffer using a
// handshake through flags of the
// HASH_IO_BUF_CTRL register. All
// blocks except the last are
// required to be 512 bits in size.
// If the last block is not 512
// bits long, only the least
// significant bits of data must be
// written, but they must be padded
// with 0s to the next 32-bit
// boundary. Host read operations
// from these register addresses
// return 0s.
#define AES_HASH_DATA_IN_13_HASH_DATA_IN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DATA_IN_14 register.
//
//*****************************************************************************
#define AES_HASH_DATA_IN_14_HASH_DATA_IN_M \
0xFFFFFFFF // HASH_DATA_IN[479:448] These
// registers must be written with
// the 512-bit input data. The data
// lines are connected directly to
// the data input of the hash
// module and hence into the
// engine's internal data buffer.
// Writing to each of the registers
// triggers a corresponding 32-bit
// write enable to the internal
// buffer. Note: The host may only
// write the input data buffer when
// the rfd_in bit of the
// HASH_IO_BUF_CTRL register is
// high. If the rfd_in bit is 0,
// the engine is busy with
// processing. During processing,
// it is not allowed to write new
// input data. For message lengths
// larger than 64 bytes, multiple
// blocks of data are written to
// this input buffer using a
// handshake through flags of the
// HASH_IO_BUF_CTRL register. All
// blocks except the last are
// required to be 512 bits in size.
// If the last block is not 512
// bits long, only the least
// significant bits of data must be
// written, but they must be padded
// with 0s to the next 32-bit
// boundary. Host read operations
// from these register addresses
// return 0s.
#define AES_HASH_DATA_IN_14_HASH_DATA_IN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DATA_IN_15 register.
//
//*****************************************************************************
#define AES_HASH_DATA_IN_15_HASH_DATA_IN_M \
0xFFFFFFFF // HASH_DATA_IN[511:480] These
// registers must be written with
// the 512-bit input data. The data
// lines are connected directly to
// the data input of the hash
// module and hence into the
// engine's internal data buffer.
// Writing to each of the registers
// triggers a corresponding 32-bit
// write enable to the internal
// buffer. Note: The host may only
// write the input data buffer when
// the rfd_in bit of the
// HASH_IO_BUF_CTRL register is
// high. If the rfd_in bit is 0,
// the engine is busy with
// processing. During processing,
// it is not allowed to write new
// input data. For message lengths
// larger than 64 bytes, multiple
// blocks of data are written to
// this input buffer using a
// handshake through flags of the
// HASH_IO_BUF_CTRL register. All
// blocks except the last are
// required to be 512 bits in size.
// If the last block is not 512
// bits long, only the least
// significant bits of data must be
// written, but they must be padded
// with 0s to the next 32-bit
// boundary. Host read operations
// from these register addresses
// return 0s.
#define AES_HASH_DATA_IN_15_HASH_DATA_IN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_IO_BUF_CTRL register.
//
//*****************************************************************************
#define AES_HASH_IO_BUF_CTRL_PAD_DMA_MESSAGE \
0x00000080 // Note: This bit must only be
// used when data is supplied
// through the DMA. It should not
// be used when data is supplied
// through the slave interface.
// This bit indicates whether the
// hash engine has to pad the
// message, received through the
// DMA and finalize the hash. When
// set to 1, the hash engine pads
// the last block using the
// programmed length. After
// padding, the final hash result
// is calculated. When set to 0,
// the hash engine treats the last
// written block as block-size
// aligned and calculates the
// intermediate digest. This bit is
// automatically cleared when the
// last DMA data block is arrived
// in the hash engine.
#define AES_HASH_IO_BUF_CTRL_PAD_DMA_MESSAGE_M \
0x00000080
#define AES_HASH_IO_BUF_CTRL_PAD_DMA_MESSAGE_S 7
#define AES_HASH_IO_BUF_CTRL_GET_DIGEST \
0x00000040 // Note: The bit description below
// is only applicable when data is
// sent through the slave
// interface. This bit must be set
// to 0 when data is received
// through the DMA. This bit
// indicates whether the hash
// engine should provide the hash
// digest. When provided
// simultaneously with data_in_av,
// the hash digest is provided
// after processing the data that
// is currently in the HASH_DATA_IN
// register. When provided without
// data_in_av, the current internal
// digest buffer value is copied to
// the HASH_DIGEST_n registers. The
// host must write a 1 to this bit
// to make the intermediate hash
// digest available. Writing 0 to
// this bit has no effect. This bit
// is automatically cleared (that
// is, reads 0) when the hash
// engine has processed the
// contents of the HASH_DATA_IN
// register. In the period between
// this bit is set by the host and
// the actual HASH_DATA_IN
// processing, this bit reads 1.
#define AES_HASH_IO_BUF_CTRL_GET_DIGEST_M \
0x00000040
#define AES_HASH_IO_BUF_CTRL_GET_DIGEST_S 6
#define AES_HASH_IO_BUF_CTRL_PAD_MESSAGE \
0x00000020 // Note: The bit description below
// is only applicable when data is
// sent through the slave
// interface. This bit must be set
// to 0 when data is received
// through the DMA. This bit
// indicates that the HASH_DATA_IN
// registers hold the last data of
// the message and hash padding
// must be applied. The host must
// write this bit to 1 in order to
// indicate to the hash engine that
// the HASH_DATA_IN register
// currently holds the last data of
// the message. When pad_message is
// set to 1, the hash engine will
// add padding bits to the data
// currently in the HASH_DATA_IN
// register. When the last message
// block is smaller than 512 bits,
// the pad_message bit must be set
// to 1 together with the
// data_in_av bit. When the last
// message block is equal to 512
// bits, pad_message may be set
// together with data_in_av. In
// this case the pad_message bit
// may also be set after the last
// data block has been written to
// the hash engine (so when the
// rfd_in bit has become 1 again
// after writing the last data
// block). Writing 0 to this bit
// has no effect. This bit is
// automatically cleared (i.e.
// reads 0) by the hash engine.
// This bit reads 1 between the
// time it was set by the host and
// the hash engine interpreted its
// value.
#define AES_HASH_IO_BUF_CTRL_PAD_MESSAGE_M \
0x00000020
#define AES_HASH_IO_BUF_CTRL_PAD_MESSAGE_S 5
#define AES_HASH_IO_BUF_CTRL_RFD_IN \
0x00000004 // Note: The bit description below
// is only applicable when data is
// sent through the slave
// interface. This bit can be
// ignored when data is received
// through the DMA. Read-only
// status of the input buffer of
// the hash engine. When 1, the
// input buffer of the hash engine
// can accept new data; the
// HASH_DATA_IN registers can
// safely be populated with new
// data. When 0, the input buffer
// of the hash engine is processing
// the data that is currently in
// HASH_DATA_IN; writing new data
// to these registers is not
// allowed.
#define AES_HASH_IO_BUF_CTRL_RFD_IN_M \
0x00000004
#define AES_HASH_IO_BUF_CTRL_RFD_IN_S 2
#define AES_HASH_IO_BUF_CTRL_DATA_IN_AV \
0x00000002 // Note: The bit description below
// is only applicable when data is
// sent through the slave
// interface. This bit must be set
// to 0 when data is received
// through the DMA. This bit
// indicates that the HASH_DATA_IN
// registers contain new input data
// for processing. The host must
// write a 1 to this bit to start
// processing the data in
// HASH_DATA_IN; the hash engine
// will process the new data as
// soon as it is ready for it
// (rfd_in bit is 1). Writing 0 to
// this bit has no effect. This bit
// is automatically cleared (i.e.
// reads as 0) when the hash engine
// starts processing the
// HASH_DATA_IN contents. This bit
// reads 1 between the time it was
// set by the host and the hash
// engine actually starts
// processing the input data block.
#define AES_HASH_IO_BUF_CTRL_DATA_IN_AV_M \
0x00000002
#define AES_HASH_IO_BUF_CTRL_DATA_IN_AV_S 1
#define AES_HASH_IO_BUF_CTRL_OUTPUT_FULL \
0x00000001 // Indicates that the output
// buffer registers (HASH_DIGEST_n)
// are available for reading by the
// host. When this bit reads 0, the
// output buffer registers are
// released; the hash engine is
// allowed to write new data to it.
// In this case, the registers
// should not be read by the host.
// When this bit reads 1, the hash
// engine has stored the result of
// the latest hash operation in the
// output buffer registers. As long
// as this bit reads 1, the host
// may read output buffer registers
// and the hash engine is prevented
// from writing new data to the
// output buffer. After retrieving
// the hash result data from the
// output buffer, the host must
// write a 1 to this bit to clear
// it. This makes the digest output
// buffer available for the hash
// engine to store new hash
// results. Writing 0 to this bit
// has no effect. Note: If this bit
// is asserted (1) no new operation
// should be started before the
// digest is retrieved from the
// hash engine and this bit is
// cleared (0).
#define AES_HASH_IO_BUF_CTRL_OUTPUT_FULL_M \
0x00000001
#define AES_HASH_IO_BUF_CTRL_OUTPUT_FULL_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_MODE_IN register.
//
//*****************************************************************************
#define AES_HASH_MODE_IN_SHA256_MODE \
0x00000008 // The host must write this bit
// with 1 before processing a hash
// session.
#define AES_HASH_MODE_IN_SHA256_MODE_M \
0x00000008
#define AES_HASH_MODE_IN_SHA256_MODE_S 3
#define AES_HASH_MODE_IN_NEW_HASH \
0x00000001 // When set to 1, it indicates
// that the hash engine must start
// processing a new hash session.
// The HASH_DIGEST_n registers will
// automatically be loaded with the
// initial hash algorithm constants
// of the selected hash algorithm.
// When this bit is 0 while the
// hash processing is started, the
// initial hash algorithm constants
// are not loaded in the
// HASH_DIGEST_n registers. The
// hash engine will start
// processing with the digest that
// is currently in its internal
// HASH_DIGEST_n registers. This
// bit is automatically cleared
// when hash processing is started.
#define AES_HASH_MODE_IN_NEW_HASH_M \
0x00000001
#define AES_HASH_MODE_IN_NEW_HASH_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_LENGTH_IN_L register.
//
//*****************************************************************************
#define AES_HASH_LENGTH_IN_L_LENGTH_IN_M \
0xFFFFFFFF // LENGTH_IN[31:0] Message length
// registers. The content of these
// registers is used by the hash
// engine during the message
// padding phase of the hash
// session. The data lines of this
// registers are directly connected
// to the interface of the hash
// engine. For a write operation by
// the host, these registers should
// be written with the message
// length in bits. Final hash
// operations: The total input data
// length must be programmed for
// new hash operations that require
// finalization (padding). The
// input data must be provided
// through the slave or DMA
// interface. Continued hash
// operations (finalized): For
// continued hash operations that
// require finalization, the total
// message length must be
// programmed, including the length
// of previously hashed data that
// corresponds to the written input
// digest. Non-final hash
// operations: For hash operations
// that do not require finalization
// (input data length is multiple
// of 512-bits which is SHA-256
// data block size), the length
// field does not need to be
// programmed since not used by the
// operation. If the message length
// in bits is below (2^32-1), then
// only HASH_LENGTH_IN_L needs to
// be written. The hardware
// automatically sets
// HASH_LENGTH_IN_H to 0s in this
// case. The host may write the
// length register at any time
// during the hash session when the
// rfd_in bit of the
// HASH_IO_BUF_CTRL is high. The
// length register must be written
// before the last data of the
// active hash session is written
// into the hash engine. host read
// operations from these register
// locations will return 0s. Note:
// When getting data from DMA, this
// register must be programmed
// before DMA is programmed to
// start.
#define AES_HASH_LENGTH_IN_L_LENGTH_IN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_LENGTH_IN_H register.
//
//*****************************************************************************
#define AES_HASH_LENGTH_IN_H_LENGTH_IN_M \
0xFFFFFFFF // LENGTH_IN[63:32] Message length
// registers. The content of these
// registers is used by the hash
// engine during the message
// padding phase of the hash
// session. The data lines of this
// registers are directly connected
// to the interface of the hash
// engine. For a write operation by
// the host, these registers should
// be written with the message
// length in bits. Final hash
// operations: The total input data
// length must be programmed for
// new hash operations that require
// finalization (padding). The
// input data must be provided
// through the slave or DMA
// interface. Continued hash
// operations (finalized): For
// continued hash operations that
// require finalization, the total
// message length must be
// programmed, including the length
// of previously hashed data that
// corresponds to the written input
// digest. Non-final hash
// operations: For hash operations
// that do not require finalization
// (input data length is multiple
// of 512-bits which is SHA-256
// data block size), the length
// field does not need to be
// programmed since not used by the
// operation. If the message length
// in bits is below (2^32-1), then
// only HASH_LENGTH_IN_L needs to
// be written. The hardware
// automatically sets
// HASH_LENGTH_IN_H to 0s in this
// case. The host may write the
// length register at any time
// during the hash session when the
// rfd_in bit of the
// HASH_IO_BUF_CTRL is high. The
// length register must be written
// before the last data of the
// active hash session is written
// into the hash engine. host read
// operations from these register
// locations will return 0s. Note:
// When getting data from DMA, this
// register must be programmed
// before DMA is programmed to
// start.
#define AES_HASH_LENGTH_IN_H_LENGTH_IN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DIGEST_A register.
//
//*****************************************************************************
#define AES_HASH_DIGEST_A_HASH_DIGEST_M \
0xFFFFFFFF // HASH_DIGEST[31:0] Hash digest
// registers Write operation:
// Continued hash: These registers
// should be written with the
// context data, before the start
// of a resumed hash session (the
// new_hash bit in the HASH_MODE
// register is 0 when starting a
// hash session). New hash: When
// initiating a new hash session
// (the new_hash bit in the
// HASH_MODE register is high), the
// internal digest registers are
// automatically set to the SHA-256
// algorithm constant and these
// register should not be written.
// Reading from these registers
// provides the intermediate hash
// result (non-final hash
// operation) or the final hash
// result (final hash operation)
// after data processing.
#define AES_HASH_DIGEST_A_HASH_DIGEST_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DIGEST_B register.
//
//*****************************************************************************
#define AES_HASH_DIGEST_B_HASH_DIGEST_M \
0xFFFFFFFF // HASH_DIGEST[63:32] Hash digest
// registers Write operation:
// Continued hash: These registers
// should be written with the
// context data, before the start
// of a resumed hash session (the
// new_hash bit in the HASH_MODE
// register is 0 when starting a
// hash session). New hash: When
// initiating a new hash session
// (the new_hash bit in the
// HASH_MODE register is high), the
// internal digest registers are
// automatically set to the SHA-256
// algorithm constant and these
// register should not be written.
// Reading from these registers
// provides the intermediate hash
// result (non-final hash
// operation) or the final hash
// result (final hash operation)
// after data processing.
#define AES_HASH_DIGEST_B_HASH_DIGEST_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DIGEST_C register.
//
//*****************************************************************************
#define AES_HASH_DIGEST_C_HASH_DIGEST_M \
0xFFFFFFFF // HASH_DIGEST[95:64] Hash digest
// registers Write operation:
// Continued hash: These registers
// should be written with the
// context data, before the start
// of a resumed hash session (the
// new_hash bit in the HASH_MODE
// register is 0 when starting a
// hash session). New hash: When
// initiating a new hash session
// (the new_hash bit in the
// HASH_MODE register is high), the
// internal digest registers are
// automatically set to the SHA-256
// algorithm constant and these
// register should not be written.
// Reading from these registers
// provides the intermediate hash
// result (non-final hash
// operation) or the final hash
// result (final hash operation)
// after data processing.
#define AES_HASH_DIGEST_C_HASH_DIGEST_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DIGEST_D register.
//
//*****************************************************************************
#define AES_HASH_DIGEST_D_HASH_DIGEST_M \
0xFFFFFFFF // HASH_DIGEST[127:96] Hash digest
// registers Write operation:
// Continued hash: These registers
// should be written with the
// context data, before the start
// of a resumed hash session (the
// new_hash bit in the HASH_MODE
// register is 0 when starting a
// hash session). New hash: When
// initiating a new hash session
// (the new_hash bit in the
// HASH_MODE register is high), the
// internal digest registers are
// automatically set to the SHA-256
// algorithm constant and these
// register should not be written.
// Reading from these registers
// provides the intermediate hash
// result (non-final hash
// operation) or the final hash
// result (final hash operation)
// after data processing.
#define AES_HASH_DIGEST_D_HASH_DIGEST_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DIGEST_E register.
//
//*****************************************************************************
#define AES_HASH_DIGEST_E_HASH_DIGEST_M \
0xFFFFFFFF // HASH_DIGEST[159:128] Hash
// digest registers Write
// operation: Continued hash: These
// registers should be written with
// the context data, before the
// start of a resumed hash session
// (the new_hash bit in the
// HASH_MODE register is 0 when
// starting a hash session). New
// hash: When initiating a new hash
// session (the new_hash bit in the
// HASH_MODE register is high), the
// internal digest registers are
// automatically set to the SHA-256
// algorithm constant and these
// register should not be written.
// Reading from these registers
// provides the intermediate hash
// result (non-final hash
// operation) or the final hash
// result (final hash operation)
// after data processing.
#define AES_HASH_DIGEST_E_HASH_DIGEST_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DIGEST_F register.
//
//*****************************************************************************
#define AES_HASH_DIGEST_F_HASH_DIGEST_M \
0xFFFFFFFF // HASH_DIGEST[191:160] Hash
// digest registers Write
// operation: Continued hash: These
// registers should be written with
// the context data, before the
// start of a resumed hash session
// (the new_hash bit in the
// HASH_MODE register is 0 when
// starting a hash session). New
// hash: When initiating a new hash
// session (the new_hash bit in the
// HASH_MODE register is high), the
// internal digest registers are
// automatically set to the SHA-256
// algorithm constant and these
// register should not be written.
// Reading from these registers
// provides the intermediate hash
// result (non-final hash
// operation) or the final hash
// result (final hash operation)
// after data processing.
#define AES_HASH_DIGEST_F_HASH_DIGEST_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DIGEST_G register.
//
//*****************************************************************************
#define AES_HASH_DIGEST_G_HASH_DIGEST_M \
0xFFFFFFFF // HASH_DIGEST[223:192] Hash
// digest registers Write
// operation: Continued hash: These
// registers should be written with
// the context data, before the
// start of a resumed hash session
// (the new_hash bit in the
// HASH_MODE register is 0 when
// starting a hash session). New
// hash: When initiating a new hash
// session (the new_hash bit in the
// HASH_MODE register is high), the
// internal digest registers are
// automatically set to the SHA-256
// algorithm constant and these
// register should not be written.
// Reading from these registers
// provides the intermediate hash
// result (non-final hash
// operation) or the final hash
// result (final hash operation)
// after data processing.
#define AES_HASH_DIGEST_G_HASH_DIGEST_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_HASH_DIGEST_H register.
//
//*****************************************************************************
#define AES_HASH_DIGEST_H_HASH_DIGEST_M \
0xFFFFFFFF // HASH_DIGEST[255:224] Hash
// digest registers Write
// operation: Continued hash: These
// registers should be written with
// the context data, before the
// start of a resumed hash session
// (the new_hash bit in the
// HASH_MODE register is 0 when
// starting a hash session). New
// hash: When initiating a new hash
// session (the new_hash bit in the
// HASH_MODE register is high), the
// internal digest registers are
// automatically set to the SHA-256
// algorithm constant and these
// register should not be written.
// Reading from these registers
// provides the intermediate hash
// result (non-final hash
// operation) or the final hash
// result (final hash operation)
// after data processing.
#define AES_HASH_DIGEST_H_HASH_DIGEST_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_CTRL_ALG_SEL register.
//
//*****************************************************************************
#define AES_CTRL_ALG_SEL_TAG 0x80000000 // If this bit is cleared to 0,
// the DMA operation involves only
// data. If this bit is set, the
// DMA operation includes a TAG
// (Authentication Result /
// Digest). For SHA-256 operation,
// a DMA must be set up for both
// input data and TAG. For any
// other selected module, setting
// this bit only allows a DMA that
// reads the TAG. No data allowed
// to be transferred to or from the
// selected module via the DMA.
#define AES_CTRL_ALG_SEL_TAG_M 0x80000000
#define AES_CTRL_ALG_SEL_TAG_S 31
#define AES_CTRL_ALG_SEL_HASH 0x00000004 // If set to one, selects the hash
// engine as destination for the
// DMA The maximum transfer size to
// DMA engine is set to 64 bytes
// for reading and 32 bytes for
// writing (the latter is only
// applicable if the hash result is
// written out through the DMA).
#define AES_CTRL_ALG_SEL_HASH_M 0x00000004
#define AES_CTRL_ALG_SEL_HASH_S 2
#define AES_CTRL_ALG_SEL_AES 0x00000002 // If set to one, selects the AES
// engine as source/destination for
// the DMA The read and write
// maximum transfer size to the DMA
// engine is set to 16 bytes.
#define AES_CTRL_ALG_SEL_AES_M 0x00000002
#define AES_CTRL_ALG_SEL_AES_S 1
#define AES_CTRL_ALG_SEL_KEYSTORE \
0x00000001 // If set to one, selects the Key
// Store as destination for the DMA
// The maximum transfer size to DMA
// engine is set to 32 bytes
// (however transfers of 16, 24 and
// 32 bytes are allowed)
#define AES_CTRL_ALG_SEL_KEYSTORE_M \
0x00000001
#define AES_CTRL_ALG_SEL_KEYSTORE_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_CTRL_PROT_EN register.
//
//*****************************************************************************
#define AES_CTRL_PROT_EN_PROT_EN \
0x00000001 // If this bit is cleared to 0,
// m_h_prot[1] on the AHB mater
// interface always remains 0. If
// this bit is set to one, the
// m_h_prot[1] signal on the master
// AHB bus is asserted to 1 if an
// AHB read operation is performed,
// using DMA, with the key store
// module as destination.
#define AES_CTRL_PROT_EN_PROT_EN_M \
0x00000001
#define AES_CTRL_PROT_EN_PROT_EN_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_CTRL_SW_RESET register.
//
//*****************************************************************************
#define AES_CTRL_SW_RESET_SW_RESET \
0x00000001 // If this bit is set to 1, the
// following modules are reset: -
// Master control internal state is
// reset. That includes interrupt,
// error status register, and
// result available interrupt
// generation FSM. - Key store
// module state is reset. That
// includes clearing the written
// area flags; therefore, the keys
// must be reloaded to the key
// store module. Writing 0 has no
// effect. The bit is self cleared
// after executing the reset.
#define AES_CTRL_SW_RESET_SW_RESET_M \
0x00000001
#define AES_CTRL_SW_RESET_SW_RESET_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_CTRL_INT_CFG register.
//
//*****************************************************************************
#define AES_CTRL_INT_CFG_LEVEL 0x00000001 // If this bit is 0, the interrupt
// output is a pulse. If this bit
// is set to 1, the interrupt is a
// level interrupt that must be
// cleared by writing the interrupt
// clear register. This bit is
// applicable for both interrupt
// output signals.
#define AES_CTRL_INT_CFG_LEVEL_M \
0x00000001
#define AES_CTRL_INT_CFG_LEVEL_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_CTRL_INT_EN register.
//
//*****************************************************************************
#define AES_CTRL_INT_EN_DMA_IN_DONE \
0x00000002 // If this bit is set to 0, the
// DMA input done (irq_dma_in_done)
// interrupt output is disabled and
// remains 0. If this bit is set to
// 1, the DMA input done interrupt
// output is enabled.
#define AES_CTRL_INT_EN_DMA_IN_DONE_M \
0x00000002
#define AES_CTRL_INT_EN_DMA_IN_DONE_S 1
#define AES_CTRL_INT_EN_RESULT_AV \
0x00000001 // If this bit is set to 0, the
// result available (irq_result_av)
// interrupt output is disabled and
// remains 0. If this bit is set to
// 1, the result available
// interrupt output is enabled.
#define AES_CTRL_INT_EN_RESULT_AV_M \
0x00000001
#define AES_CTRL_INT_EN_RESULT_AV_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_CTRL_INT_CLR register.
//
//*****************************************************************************
#define AES_CTRL_INT_CLR_DMA_BUS_ERR \
0x80000000 // If 1 is written to this bit,
// the DMA bus error status is
// cleared. Writing 0 has no
// effect.
#define AES_CTRL_INT_CLR_DMA_BUS_ERR_M \
0x80000000
#define AES_CTRL_INT_CLR_DMA_BUS_ERR_S 31
#define AES_CTRL_INT_CLR_KEY_ST_WR_ERR \
0x40000000 // If 1 is written to this bit,
// the key store write error status
// is cleared. Writing 0 has no
// effect.
#define AES_CTRL_INT_CLR_KEY_ST_WR_ERR_M \
0x40000000
#define AES_CTRL_INT_CLR_KEY_ST_WR_ERR_S 30
#define AES_CTRL_INT_CLR_KEY_ST_RD_ERR \
0x20000000 // If 1 is written to this bit,
// the key store read error status
// is cleared. Writing 0 has no
// effect.
#define AES_CTRL_INT_CLR_KEY_ST_RD_ERR_M \
0x20000000
#define AES_CTRL_INT_CLR_KEY_ST_RD_ERR_S 29
#define AES_CTRL_INT_CLR_DMA_IN_DONE \
0x00000002 // If 1 is written to this bit,
// the DMA in done
// (irq_dma_in_done) interrupt
// output is cleared. Writing 0 has
// no effect. Note that clearing an
// interrupt makes sense only if
// the interrupt output is
// programmed as level (refer to
// CTRL_INT_CFG).
#define AES_CTRL_INT_CLR_DMA_IN_DONE_M \
0x00000002
#define AES_CTRL_INT_CLR_DMA_IN_DONE_S 1
#define AES_CTRL_INT_CLR_RESULT_AV \
0x00000001 // If 1 is written to this bit,
// the result available
// (irq_result_av) interrupt output
// is cleared. Writing 0 has no
// effect. Note that clearing an
// interrupt makes sense only if
// the interrupt output is
// programmed as level (refer to
// CTRL_INT_CFG).
#define AES_CTRL_INT_CLR_RESULT_AV_M \
0x00000001
#define AES_CTRL_INT_CLR_RESULT_AV_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_CTRL_INT_SET register.
//
//*****************************************************************************
#define AES_CTRL_INT_SET_DMA_IN_DONE \
0x00000002 // If 1 is written to this bit,
// the DMA data in done
// (irq_dma_in_done) interrupt
// output is set to one. Writing 0
// has no effect. If the interrupt
// configuration register is
// programmed to pulse, clearing
// the DMA data in done
// (irq_dma_in_done) interrupt is
// not needed. If it is programmed
// to level, clearing the interrupt
// output should be done by writing
// the interrupt clear register
// (CTRL_INT_CLR).
#define AES_CTRL_INT_SET_DMA_IN_DONE_M \
0x00000002
#define AES_CTRL_INT_SET_DMA_IN_DONE_S 1
#define AES_CTRL_INT_SET_RESULT_AV \
0x00000001 // If 1 is written to this bit,
// the result available
// (irq_result_av) interrupt output
// is set to one. Writing 0 has no
// effect. If the interrupt
// configuration register is
// programmed to pulse, clearing
// the result available
// (irq_result_av) interrupt is not
// needed. If it is programmed to
// level, clearing the interrupt
// output should be done by writing
// the interrupt clear register
// (CTRL_INT_CLR).
#define AES_CTRL_INT_SET_RESULT_AV_M \
0x00000001
#define AES_CTRL_INT_SET_RESULT_AV_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_CTRL_INT_STAT register.
//
//*****************************************************************************
#define AES_CTRL_INT_STAT_DMA_BUS_ERR \
0x80000000 // This bit is set when a DMA bus
// error is detected during a DMA
// operation. The value of this
// register is held until it is
// cleared through the CTRL_INT_CLR
// register. Note: This error is
// asserted if an error is detected
// on the AHB master interface
// during a DMA operation.
#define AES_CTRL_INT_STAT_DMA_BUS_ERR_M \
0x80000000
#define AES_CTRL_INT_STAT_DMA_BUS_ERR_S 31
#define AES_CTRL_INT_STAT_KEY_ST_WR_ERR \
0x40000000 // This bit is set when a write
// error is detected during the DMA
// write operation to the key store
// memory. The value of this
// register is held until it is
// cleared through the CTRL_INT_CLR
// register. Note: This error is
// asserted if a DMA operation does
// not cover a full key area or
// more areas are written than
// expected.
#define AES_CTRL_INT_STAT_KEY_ST_WR_ERR_M \
0x40000000
#define AES_CTRL_INT_STAT_KEY_ST_WR_ERR_S 30
#define AES_CTRL_INT_STAT_KEY_ST_RD_ERR \
0x20000000 // This bit is set when a read
// error is detected during the
// read of a key from the key
// store, while copying it to the
// AES core. The value of this
// register is held until it is
// cleared through the CTRL_INT_CLR
// register. Note: This error is
// asserted if a key location is
// selected in the key store that
// is not available.
#define AES_CTRL_INT_STAT_KEY_ST_RD_ERR_M \
0x20000000
#define AES_CTRL_INT_STAT_KEY_ST_RD_ERR_S 29
#define AES_CTRL_INT_STAT_DMA_IN_DONE \
0x00000002 // This read only bit returns the
// actual DMA data in done
// (irq_data_in_done) interrupt
// status of the DMA data in done
// interrupt output pin
// (irq_data_in_done).
#define AES_CTRL_INT_STAT_DMA_IN_DONE_M \
0x00000002
#define AES_CTRL_INT_STAT_DMA_IN_DONE_S 1
#define AES_CTRL_INT_STAT_RESULT_AV \
0x00000001 // This read only bit returns the
// actual result available
// (irq_result_av) interrupt status
// of the result available
// interrupt output pin
// (irq_result_av).
#define AES_CTRL_INT_STAT_RESULT_AV_M \
0x00000001
#define AES_CTRL_INT_STAT_RESULT_AV_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_CTRL_OPTIONS register.
//
//*****************************************************************************
#define AES_CTRL_OPTIONS_TYPE_M 0xFF000000 // This field is 0x01 for the
// TYPE1 device.
#define AES_CTRL_OPTIONS_TYPE_S 24
#define AES_CTRL_OPTIONS_AHBINTERFACE \
0x00010000 // AHB interface is available If
// this bit is 0, the EIP-120t has
// a TCM interface.
#define AES_CTRL_OPTIONS_AHBINTERFACE_M \
0x00010000
#define AES_CTRL_OPTIONS_AHBINTERFACE_S 16
#define AES_CTRL_OPTIONS_SHA_256 \
0x00000100 // The HASH core supports SHA-256.
#define AES_CTRL_OPTIONS_SHA_256_M \
0x00000100
#define AES_CTRL_OPTIONS_SHA_256_S 8
#define AES_CTRL_OPTIONS_AES_CCM \
0x00000080 // AES-CCM is available as a
// single operation.
#define AES_CTRL_OPTIONS_AES_CCM_M \
0x00000080
#define AES_CTRL_OPTIONS_AES_CCM_S 7
#define AES_CTRL_OPTIONS_AES_GCM \
0x00000040 // AES-GCM is available as a
// single operation.
#define AES_CTRL_OPTIONS_AES_GCM_M \
0x00000040
#define AES_CTRL_OPTIONS_AES_GCM_S 6
#define AES_CTRL_OPTIONS_AES_256 \
0x00000020 // AES core supports 256-bit keys
// Note: If both AES-128 and
// AES-256 are set to one, the AES
// core supports 192-bit keys as
// well.
#define AES_CTRL_OPTIONS_AES_256_M \
0x00000020
#define AES_CTRL_OPTIONS_AES_256_S 5
#define AES_CTRL_OPTIONS_AES_128 \
0x00000010 // AES core supports 128-bit keys.
#define AES_CTRL_OPTIONS_AES_128_M \
0x00000010
#define AES_CTRL_OPTIONS_AES_128_S 4
#define AES_CTRL_OPTIONS_HASH 0x00000004 // HASH Core is available.
#define AES_CTRL_OPTIONS_HASH_M 0x00000004
#define AES_CTRL_OPTIONS_HASH_S 2
#define AES_CTRL_OPTIONS_AES 0x00000002 // AES core is available.
#define AES_CTRL_OPTIONS_AES_M 0x00000002
#define AES_CTRL_OPTIONS_AES_S 1
#define AES_CTRL_OPTIONS_KEYSTORE \
0x00000001 // KEY STORE is available.
#define AES_CTRL_OPTIONS_KEYSTORE_M \
0x00000001
#define AES_CTRL_OPTIONS_KEYSTORE_S 0
//*****************************************************************************
//
// The following are defines for the bit fields in the
// AES_CTRL_VERSION register.
//
//*****************************************************************************
#define AES_CTRL_VERSION_MAJOR_VERSION_M \
0x0F000000 // Major version number
#define AES_CTRL_VERSION_MAJOR_VERSION_S 24
#define AES_CTRL_VERSION_MINOR_VERSION_M \
0x00F00000 // Minor version number
#define AES_CTRL_VERSION_MINOR_VERSION_S 20
#define AES_CTRL_VERSION_PATCH_LEVEL_M \
0x000F0000 // Patch level Starts at 0 at
// first delivery of this version
#define AES_CTRL_VERSION_PATCH_LEVEL_S 16
#define AES_CTRL_VERSION_EIP_NUMBER_COMPL_M \
0x0000FF00 // These bits simply contain the
// complement of bits [7:0] (0x87),
// used by a driver to ascertain
// that the EIP-120t register is
// indeed read.
#define AES_CTRL_VERSION_EIP_NUMBER_COMPL_S 8
#define AES_CTRL_VERSION_EIP_NUMBER_M \
0x000000FF // These bits encode the EIP
// number for the EIP-120t, this
// field contains the value 120
// (decimal) or 0x78.
#define AES_CTRL_VERSION_EIP_NUMBER_S 0
#endif // __HW_AES_H__