1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/sam3/periph/timer.c
2015-06-15 14:29:46 +02:00

528 lines
13 KiB
C

/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup driver_periph
* @{
*
* @file
* @brief Low-level timer driver implementation for the SAM3X8E CPU
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include <stdlib.h>
#include <stdio.h>
#include "board.h"
#include "cpu.h"
#include "sched.h"
#include "thread.h"
#include "periph/timer.h"
#include "periph_conf.h"
typedef struct {
void (*cb)(int);
} timer_conf_t;
/**
* @brief Timer state memory
*/
static timer_conf_t timer_config[TIMER_NUMOF];
/**
* @brief Setup the given timer
*
* The SAM3X8E has 3 timers. Each timer has 3 independent channels.
* RIOT uses the timers in WAVE mode with the following clock chaining:
*
* ---------- ----------
* | | | |-> IRQ-compareA
* | TCx[2] | ---- TIOA2 --->| TCx[0] |-> IRQ-compareB
* | | | | |-> IRQ-compareC
* ---------- | ----------
* ^ |
* | | ----------
* | | | |-> IRQ-compareA
* TIMER_CLOCK1 ------->| TCx[1] |-> IRQ-compareB
* | |-> IRQ-compareC
* ----------
*
* For each timer, channel 0 is used to implement a prescaler. Channel 0 is
* driven by the MCK / 2 (42MHz) (TIMER_CLOCK1).
*/
int timer_init(tim_t dev, unsigned int ticks_per_us, void (*callback)(int))
{
Tc *tim;
/* select the timer and enable the timer specific peripheral clocks */
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
tim = TIMER_0_DEV;
PMC->PMC_PCER0 = (1 << ID_TC0) | (1 << ID_TC1) | (1 << ID_TC2);
break;
#endif
#if TIMER_1_EN
case TIMER_1:
tim = TIMER_1_DEV;
PMC->PMC_PCER0 = (1 << ID_TC3) | (1 << ID_TC4);
PMC->PMC_PCER1 = (1 << (ID_TC5 - 32));
break;
#endif
#if TIMER_2_EN
case TIMER_2:
tim = TIMER_2_DEV;
PMC->PMC_PCER1 = (1 << (ID_TC6 - 32)) | (1 << (ID_TC7 - 32)) | (1 << (ID_TC8 - 32));
break;
#endif
case TIMER_UNDEFINED:
default:
return -1;
}
/* save callback */
timer_config[dev].cb = callback;
/* configure the timer block by connecting TIOA2 to XC0 and XC1 */
tim->TC_BMR = TC_BMR_TC0XC0S_TIOA2 | TC_BMR_TC1XC1S_TIOA2;
/* configure and enable channels 0 and 1 to use XC0 and XC1 as input */
tim->TC_CHANNEL[0].TC_CMR = TC_CMR_TCCLKS_XC0 | TC_CMR_WAVE | TC_CMR_EEVT_XC0;
tim->TC_CHANNEL[1].TC_CMR = TC_CMR_TCCLKS_XC1 | TC_CMR_WAVE | TC_CMR_EEVT_XC0;
tim->TC_CHANNEL[0].TC_CCR = TC_CCR_CLKEN | TC_CCR_SWTRG; /* and start */
tim->TC_CHANNEL[1].TC_CCR = TC_CCR_CLKEN | TC_CCR_SWTRG; /* and start */
/* configure channel 2:
* - select wave mode
* - set input clock to TIMER_CLOCK1 (MCK/2)
* - reload on TC_CV == TC_RC
* - let TIOA2 signal be toggled when TC_CV == TC_RC
*/
tim->TC_CHANNEL[2].TC_CMR = TC_CMR_TCCLKS_TIMER_CLOCK1 | TC_CMR_WAVE
| TC_CMR_WAVSEL_UP_RC | TC_CMR_ACPC_TOGGLE;
/* configure the frequency of channel 2 to 1us * ticks_per_us
*
* note: as channels 0 and 1 are only incremented on rising edges of TIOA2 line and
* channel 2 toggles this line on each timer tick, the actual frequency driving ch0/1
* is f_ch2 / 2 --> f_ch0/1 = (MCK / 2 / 2 / 1000000) * ticks_per_us.
*/
tim->TC_CHANNEL[2].TC_RC = ((F_CPU / 1000000) / 4) * ticks_per_us;
/* start channel 2 */
tim->TC_CHANNEL[2].TC_CCR = TC_CCR_CLKEN | TC_CCR_SWTRG;
/* enable interrupts for given timer */
timer_irq_enable(dev);
return 0;
}
int timer_set(tim_t dev, int channel, unsigned int timeout)
{
return timer_set_absolute(dev, channel, timer_read(dev) + timeout);
}
int timer_set_absolute(tim_t dev, int channel, unsigned int value)
{
Tc *tim;
/* get timer base register address */
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
tim = TIMER_0_DEV;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
tim = TIMER_1_DEV;
break;
#endif
#if TIMER_2_EN
case TIMER_2:
tim = TIMER_2_DEV;
break;
#endif
case TIMER_UNDEFINED:
default:
return -1;
}
/* set timeout value */
switch (channel) {
case 0:
tim->TC_CHANNEL[0].TC_RA = value;
tim->TC_CHANNEL[0].TC_IER = TC_IER_CPAS;
break;
case 1:
tim->TC_CHANNEL[0].TC_RB = value;
tim->TC_CHANNEL[0].TC_IER = TC_IER_CPBS;
break;
case 2:
tim->TC_CHANNEL[0].TC_RC = value;
tim->TC_CHANNEL[0].TC_IER = TC_IER_CPCS;
break;
case 3:
tim->TC_CHANNEL[1].TC_RA = value;
tim->TC_CHANNEL[1].TC_IER = TC_IER_CPAS;
break;
case 4:
tim->TC_CHANNEL[1].TC_RB = value;
tim->TC_CHANNEL[1].TC_IER = TC_IER_CPBS;
break;
case 5:
tim->TC_CHANNEL[1].TC_RC = value;
tim->TC_CHANNEL[1].TC_IER = TC_IER_CPCS;
break;
default:
return -1;
}
return 1;
}
int timer_clear(tim_t dev, int channel)
{
Tc *tim;
/* get timer base register address */
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
tim = TIMER_0_DEV;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
tim = TIMER_1_DEV;
break;
#endif
#if TIMER_2_EN
case TIMER_2:
tim = TIMER_2_DEV;
break;
#endif
case TIMER_UNDEFINED:
default:
return -1;
}
/* disable the channels interrupt */
switch (channel) {
case 0:
tim->TC_CHANNEL[0].TC_IDR = TC_IDR_CPAS;
break;
case 1:
tim->TC_CHANNEL[0].TC_IDR = TC_IDR_CPBS;
break;
case 2:
tim->TC_CHANNEL[0].TC_IDR = TC_IDR_CPCS;
break;
case 3:
tim->TC_CHANNEL[1].TC_IDR = TC_IDR_CPAS;
break;
case 4:
tim->TC_CHANNEL[1].TC_IDR = TC_IDR_CPBS;
break;
case 5:
tim->TC_CHANNEL[1].TC_IDR = TC_IDR_CPCS;
break;
default:
return -1;
}
return 1;
}
/*
* The timer channels 1 and 2 are configured to run with the same speed and
* have the same value (they run in parallel), so only on of them is returned.
*/
unsigned int timer_read(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
return TIMER_0_DEV->TC_CHANNEL[0].TC_CV;
#endif
#if TIMER_1_EN
case TIMER_1:
return TIMER_1_DEV->TC_CHANNEL[0].TC_CV;
#endif
#if TIMER_2_EN
case TIMER_2:
return TIMER_2_DEV->TC_CHANNEL[0].TC_CV;
#endif
case TIMER_UNDEFINED:
default:
return 0;
}
}
/*
* For stopping the counting of channels 1 + 2, channel 0 is disabled.
*/
void timer_stop(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
TIMER_0_DEV->TC_CHANNEL[2].TC_CCR = TC_CCR_CLKDIS;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
TIMER_1_DEV->TC_CHANNEL[2].TC_CCR = TC_CCR_CLKDIS;
break;
#endif
#if TIMER_2_EN
case TIMER_2:
TIMER_2_DEV->TC_CHANNEL[2].TC_CCR = TC_CCR_CLKDIS;
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
void timer_start(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
TIMER_0_DEV->TC_CHANNEL[2].TC_CCR = TC_CCR_CLKEN;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
TIMER_1_DEV->TC_CHANNEL[2].TC_CCR = TC_CCR_CLKEN;
break;
#endif
#if TIMER_2_EN
case TIMER_2:
TIMER_2_DEV->TC_CHANNEL[2].TC_CCR = TC_CCR_CLKEN;
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
void timer_irq_enable(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
NVIC_EnableIRQ(TC0_IRQn);
NVIC_EnableIRQ(TC1_IRQn);
break;
#endif
#if TIMER_1_EN
case TIMER_1:
NVIC_EnableIRQ(TC3_IRQn);
NVIC_EnableIRQ(TC4_IRQn);
break;
#endif
#if TIMER_2_EN
case TIMER_2:
NVIC_EnableIRQ(TC6_IRQn);
NVIC_EnableIRQ(TC7_IRQn);
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
void timer_irq_disable(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
NVIC_DisableIRQ(TC0_IRQn);
NVIC_DisableIRQ(TC1_IRQn);
break;
#endif
#if TIMER_1_EN
case TIMER_1:
NVIC_DisableIRQ(TC3_IRQn);
NVIC_DisableIRQ(TC4_IRQn);
break;
#endif
#if TIMER_2_EN
case TIMER_2:
NVIC_DisableIRQ(TC6_IRQn);
NVIC_DisableIRQ(TC7_IRQn);
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
void timer_reset(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
TIMER_0_DEV->TC_CHANNEL[0].TC_CCR = TC_CCR_SWTRG;
TIMER_0_DEV->TC_CHANNEL[1].TC_CCR = TC_CCR_SWTRG;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
TIMER_1_DEV->TC_CHANNEL[0].TC_CCR = TC_CCR_SWTRG;
TIMER_1_DEV->TC_CHANNEL[1].TC_CCR = TC_CCR_SWTRG;
break;
#endif
#if TIMER_2_EN
case TIMER_2:
TIMER_2_DEV->TC_CHANNEL[0].TC_CCR = TC_CCR_SWTRG;
TIMER_2_DEV->TC_CHANNEL[1].TC_CCR = TC_CCR_SWTRG;
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
#if TIMER_0_EN
void TIMER_0_ISR1(void)
{
uint32_t status = TIMER_0_DEV->TC_CHANNEL[0].TC_SR;
if (status & TC_SR_CPAS) {
TIMER_0_DEV->TC_CHANNEL[0].TC_IDR = TC_IDR_CPAS;
timer_config[TIMER_0].cb(0);
}
else if (status & TC_SR_CPBS) {
TIMER_0_DEV->TC_CHANNEL[0].TC_IDR = TC_IDR_CPBS;
timer_config[TIMER_0].cb(1);
}
else if (status & TC_SR_CPCS) {
TIMER_0_DEV->TC_CHANNEL[0].TC_IDR = TC_IDR_CPCS;
timer_config[TIMER_0].cb(2);
}
if (sched_context_switch_request) {
thread_yield();
}
}
void TIMER_0_ISR2(void)
{
uint32_t status = TIMER_0_DEV->TC_CHANNEL[1].TC_SR;
if (status & TC_SR_CPAS) {
TIMER_0_DEV->TC_CHANNEL[1].TC_IDR = TC_IDR_CPAS;
timer_config[TIMER_0].cb(3);
}
else if (status & TC_SR_CPBS) {
TIMER_0_DEV->TC_CHANNEL[1].TC_IDR = TC_IDR_CPBS;
timer_config[TIMER_0].cb(4);
}
else if (status & TC_SR_CPCS) {
TIMER_0_DEV->TC_CHANNEL[1].TC_IDR = TC_IDR_CPCS;
timer_config[TIMER_0].cb(5);
}
if (sched_context_switch_request) {
thread_yield();
}
}
#endif /* TIMER_0_EN */
#if TIMER_1_EN
void TIMER_1_ISR1(void)
{
uint32_t status = TIMER_1_DEV->TC_CHANNEL[0].TC_SR;
if (status & TC_SR_CPAS) {
TIMER_1_DEV->TC_CHANNEL[0].TC_IDR = TC_IDR_CPAS;
timer_config[TIMER_1].cb(0);
}
if (status & TC_SR_CPBS) {
TIMER_1_DEV->TC_CHANNEL[0].TC_IDR = TC_IDR_CPBS;
timer_config[TIMER_1].cb(1);
}
if (status & TC_SR_CPCS) {
TIMER_1_DEV->TC_CHANNEL[0].TC_IDR = TC_IDR_CPCS;
timer_config[TIMER_1].cb(2);
}
if (sched_context_switch_request) {
thread_yield();
}
}
void TIMER_1_ISR2(void)
{
uint32_t status = TIMER_1_DEV->TC_CHANNEL[1].TC_SR;
if (status & TC_SR_CPAS) {
TIMER_1_DEV->TC_CHANNEL[1].TC_IDR = TC_IDR_CPAS;
timer_config[TIMER_1].cb(3);
}
if (status & TC_SR_CPBS) {
TIMER_1_DEV->TC_CHANNEL[1].TC_IDR = TC_IDR_CPBS;
timer_config[TIMER_1].cb(4);
}
if (status & TC_SR_CPCS) {
TIMER_1_DEV->TC_CHANNEL[1].TC_IDR = TC_IDR_CPCS;
timer_config[TIMER_1].cb(5);
}
if (sched_context_switch_request) {
thread_yield();
}
}
#endif /* TIMER_1_EN */
#if TIMER_2_EN
void TIMER_2_ISR1(void)
{
uint32_t status = TIMER_2_DEV->TC_CHANNEL[0].TC_SR;
if (status & TC_SR_CPAS) {
TIMER_2_DEV->TC_CHANNEL[0].TC_IDR = TC_IDR_CPAS;
timer_config[TIMER_2].cb(0);
}
else if (status & TC_SR_CPBS) {
TIMER_2_DEV->TC_CHANNEL[0].TC_IDR = TC_IDR_CPBS;
timer_config[TIMER_2].cb(1);
}
else if (status & TC_SR_CPCS) {
TIMER_2_DEV->TC_CHANNEL[0].TC_IDR = TC_IDR_CPCS;
timer_config[TIMER_2].cb(2);
}
if (sched_context_switch_request) {
thread_yield();
}
}
void TIMER_2_ISR2(void)
{
uint32_t status = TIMER_2_DEV->TC_CHANNEL[1].TC_SR;
if (status & TC_SR_CPAS) {
TIMER_2_DEV->TC_CHANNEL[1].TC_IDR = TC_IDR_CPAS;
timer_config[TIMER_2].cb(3);
}
else if (status & TC_SR_CPBS) {
TIMER_2_DEV->TC_CHANNEL[1].TC_IDR = TC_IDR_CPBS;
timer_config[TIMER_2].cb(4);
}
else if (status & TC_SR_CPCS) {
TIMER_2_DEV->TC_CHANNEL[1].TC_IDR = TC_IDR_CPCS;
timer_config[TIMER_2].cb(5);
}
if (sched_context_switch_request) {
thread_yield();
}
}
#endif /* TIMER_2_EN */