mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2025-01-18 12:52:44 +01:00
140 lines
3.4 KiB
C
140 lines
3.4 KiB
C
/*
|
||
* Copyright (C) 2014-2016 Freie Universität Berlin
|
||
* Copyright (C) 2018 HAW-Hamburg
|
||
* Copyright (C) 2021 Inria
|
||
*
|
||
* This file is subject to the terms and conditions of the GNU Lesser General
|
||
* Public License v2.1. See the file LICENSE in the top level directory for more
|
||
* details.
|
||
*/
|
||
|
||
/**
|
||
* @ingroup cpu_stm32
|
||
* @ingroup drivers_periph_adc
|
||
* @{
|
||
*
|
||
* @file
|
||
* @brief Low-level ADC driver implementation
|
||
*
|
||
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
|
||
* @author Michel Rottleuthner <michel.rottleuthner@haw-hamburg.de>
|
||
* @author Francisco Molina <francois-xavier.molina@inria.fr>
|
||
*
|
||
* @}
|
||
*/
|
||
|
||
#include "cpu.h"
|
||
#include "mutex.h"
|
||
#include "periph/adc.h"
|
||
#include "periph_conf.h"
|
||
#include "ztimer.h"
|
||
|
||
/**
|
||
* @brief Allocate lock for the ADC device
|
||
*
|
||
* All STM32WL CPUs we support so far only come with a single ADC device.
|
||
*/
|
||
static mutex_t lock = MUTEX_INIT;
|
||
|
||
static inline void prep(void)
|
||
{
|
||
mutex_lock(&lock);
|
||
periph_clk_en(APB2, RCC_APB2ENR_ADCEN);
|
||
}
|
||
|
||
static inline void done(void)
|
||
{
|
||
periph_clk_dis(APB2, RCC_APB2ENR_ADCEN);
|
||
mutex_unlock(&lock);
|
||
}
|
||
|
||
int adc_init(adc_t line)
|
||
{
|
||
/* check if the line is valid */
|
||
if (line >= ADC_NUMOF) {
|
||
return -1;
|
||
}
|
||
|
||
/* lock device and enable its peripheral clock */
|
||
prep();
|
||
|
||
/* configure the pin */
|
||
gpio_init_analog(adc_config[line].pin);
|
||
|
||
/* init ADC line only if it wasn't already initialized */
|
||
if (!(ADC->CR & (ADC_CR_ADEN))) {
|
||
|
||
/* set prescaler to 0 to let the ADC run with maximum speed */
|
||
ADC_COMMON->CCR &= ~(ADC_CCR_PRESC);
|
||
|
||
/* set ADC clock to PCLK/2 otherwise */
|
||
ADC->CFGR2 &= ~(ADC_CFGR2_CKMODE_0 | ADC_CFGR2_CKMODE_1);
|
||
ADC->CFGR2 |= ADC_CFGR2_CKMODE_0;
|
||
|
||
/* enable ADC internal voltage regulator and wait for startup period */
|
||
ADC->CR |= (ADC_CR_ADVREGEN);
|
||
#if IS_USED(MODULE_ZTIMER_USEC)
|
||
ztimer_sleep(ZTIMER_USEC, ADC_T_ADCVREG_STUP_US);
|
||
#else
|
||
/* to avoid using ZTIMER_USEC unless already included round up the
|
||
internal voltage regulator start up to 1ms */
|
||
ztimer_sleep(ZTIMER_MSEC, 1);
|
||
#endif
|
||
|
||
/* ´start automatic calibration and wait for it to complete */
|
||
ADC->CR |= ADC_CR_ADCAL;
|
||
while (ADC->CR & ADC_CR_ADCAL) {}
|
||
|
||
/* clear ADRDY by writing it*/
|
||
ADC->ISR |= (ADC_ISR_ADRDY);
|
||
|
||
/* enable ADC and wait for it to be ready */
|
||
ADC->CR |= (ADC_CR_ADEN);
|
||
while ((ADC->ISR & ADC_ISR_ADRDY) == 0) {}
|
||
|
||
/* set sequence length to 1 conversion */
|
||
ADC->CFGR1 &= ~ADC_CFGR1_CONT;
|
||
|
||
/* Sampling time of 3.5 ADC clocks for all channels*/
|
||
ADC->SMPR = 0x0101;
|
||
}
|
||
|
||
/* free the device again */
|
||
done();
|
||
return 0;
|
||
}
|
||
|
||
int32_t adc_sample(adc_t line, adc_res_t res)
|
||
{
|
||
int sample;
|
||
|
||
/* check if resolution is applicable */
|
||
if (res & 0x3) {
|
||
return -1;
|
||
}
|
||
|
||
/* lock and power on the ADC device */
|
||
prep();
|
||
|
||
/* first clear resolution */
|
||
ADC->CFGR1 &= ~ADC_CFGR1_RES;
|
||
|
||
/* then set resolution to the required value*/
|
||
ADC->CFGR1 |= res;
|
||
|
||
/* specify channel for regular conversion */
|
||
ADC->CHSELR = (1 << adc_config[line].chan);
|
||
|
||
/* start conversion and wait for it to complete */
|
||
ADC->CR |= ADC_CR_ADSTART;
|
||
while (!(ADC->ISR & ADC_ISR_EOC)) {}
|
||
|
||
/* read the sample */
|
||
sample = (int)ADC->DR;
|
||
|
||
/* free the device again */
|
||
done();
|
||
|
||
return sample;
|
||
}
|