1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-15 17:32:44 +01:00
RIOT/cpu/samd21/periph/spi.c
Joakim Gebart bec43f11d8 samd21: Basic implementation of spi_acquire(), spi_release()
Signed-off-by: Joakim Gebart <joakim.gebart@eistec.se>
2015-01-19 19:05:20 +01:00

328 lines
8.7 KiB
C

/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_samd21
* @{
*
* @file spi.c
* @brief Low-level SPI driver implementation
*
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
* @author Troels Hoffmeyer <troels.d.hoffmeyer@gmail.com>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Joakim Gebart <joakim.gebart@eistec.se>
*
* @}
*/
#include "cpu.h"
#include "mutex.h"
#include "periph/gpio.h"
#include "periph/spi.h"
#include "periph_conf.h"
#include "board.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
#if SPI_0_EN || SPI_1_EN
/**
* @brief Array holding one pre-initialized mutex for each SPI device
*/
static mutex_t locks[] = {
#if SPI_0_EN
[SPI_0] = MUTEX_INIT,
#endif
#if SPI_1_EN
[SPI_1] = MUTEX_INIT,
#endif
#if SPI_2_EN
[SPI_2] = MUTEX_INIT
#endif
};
int spi_init_master(spi_t dev, spi_conf_t conf, spi_speed_t speed)
{
SercomSpi* spi_dev = 0;
uint8_t dopo = 0;
uint8_t dipo = 0;
uint8_t cpha = 0;
uint8_t cpol = 0;
uint32_t f_baud = 0;
switch(speed)
{
case SPI_SPEED_100KHZ:
f_baud = 100000;
break;
case SPI_SPEED_400KHZ:
f_baud = 400000;
break;
case SPI_SPEED_1MHZ:
f_baud = 1000000;
break;
case SPI_SPEED_5MHZ:
return -1;
case SPI_SPEED_10MHZ:
return -1;
}
switch(conf)
{
case SPI_CONF_FIRST_RISING: /**< first data bit is transacted on the first rising SCK edge */
cpha = 0;
cpol = 0;
break;
case SPI_CONF_SECOND_RISING:/**< first data bit is transacted on the second rising SCK edge */
cpha = 1;
cpol = 0;
break;
case SPI_CONF_FIRST_FALLING:/**< first data bit is transacted on the first falling SCK edge */
cpha = 0;
cpol = 1;
break;
case SPI_CONF_SECOND_FALLING:/**< first data bit is transacted on the second falling SCK edge */
cpha = 1;
cpol = 1;
break;
}
switch(dev)
{
#ifdef SPI_0_EN
case SPI_0:
spi_dev = &SPI_0_DEV;
/* Enable sercom4 in power manager */
PM->APBCMASK.reg |= PM_APBCMASK_SERCOM4;
GCLK->CLKCTRL.reg = (uint32_t)((GCLK_CLKCTRL_CLKEN
| GCLK_CLKCTRL_GEN_GCLK0
| (SERCOM4_GCLK_ID_CORE << GCLK_CLKCTRL_ID_Pos)));
/* Setup clock */
while (GCLK->STATUS.bit.SYNCBUSY);
/* Mux enable*/
SPI_0_SCLK_DEV.PINCFG[ SPI_0_SCLK_PIN ].bit.PMUXEN = 1;
SPI_0_MISO_DEV.PINCFG[ SPI_0_MISO_PIN ].bit.PMUXEN = 1;
SPI_0_MOSI_DEV.PINCFG[ SPI_0_MOSI_PIN ].bit.PMUXEN = 1;
/*Set mux function to spi. seperate registers, for even or odd pins */
SPI_0_SCLK_DEV.PMUX[ SPI_0_SCLK_PIN / 2].bit.PMUXE = 5;
SPI_0_MISO_DEV.PMUX[ SPI_0_MISO_PIN / 2].bit.PMUXO = 5;
SPI_0_MOSI_DEV.PMUX[ SPI_0_MOSI_PIN / 2].bit.PMUXE = 5;
/* SCLK+MOSI */
SPI_0_SCLK_DEV.DIRSET.reg = 1 << SPI_0_SCLK_PIN;
SPI_0_MOSI_DEV.DIRSET.reg = 1 << SPI_0_MOSI_PIN;
/* MISO = input */
/* configure as input */
SPI_0_MISO_DEV.DIRCLR.reg = 1 << SPI_0_MISO_PIN;
SPI_0_MISO_DEV.PINCFG[ SPI_0_MISO_PIN ].bit.INEN = true;
SPI_0_MISO_DEV.OUTCLR.reg = 1 << SPI_0_MISO_PIN;
SPI_0_MISO_DEV.PINCFG[ SPI_0_MISO_PIN ].bit.PULLEN = true;
dopo = SPI_0_DOPO;
dipo = SPI_0_DIPO;
break;
#endif
#ifdef SPI_1_EN
case SPI_1:
spi_dev = &SPI_1_DEV;
/* Enable sercom5 in power manager */
PM->APBCMASK.reg |= PM_APBCMASK_SERCOM5;
/* Setup clock */ /* configure GCLK0 to feed sercom5 */;
GCLK->CLKCTRL.reg = (uint32_t)((GCLK_CLKCTRL_CLKEN
| GCLK_CLKCTRL_GEN_GCLK0
| (SERCOM5_GCLK_ID_CORE << GCLK_CLKCTRL_ID_Pos)));
/* Mux enable*/
SPI_1_SCLK_DEV.PINCFG[ SPI_1_SCLK_PIN ].bit.PMUXEN = 1;
SPI_1_MISO_DEV.PINCFG[ SPI_1_MISO_PIN ].bit.PMUXEN = 1;
SPI_1_MOSI_DEV.PINCFG[ SPI_1_MOSI_PIN ].bit.PMUXEN = 1;
/*Set mux function to spi. seperate registers, for even or odd pins */
SPI_1_SCLK_DEV.PMUX[ SPI_1_SCLK_PIN / 2].bit.PMUXO = 3;
SPI_1_MISO_DEV.PMUX[ SPI_1_MISO_PIN / 2].bit.PMUXE = 3;
SPI_1_MOSI_DEV.PMUX[ SPI_1_MOSI_PIN / 2].bit.PMUXE = 3;
/* SCLK+MOSI */
SPI_1_SCLK_DEV.DIRSET.reg = 1 << SPI_1_SCLK_PIN;
SPI_1_MOSI_DEV.DIRSET.reg = 1 << SPI_1_MOSI_PIN;
/* MISO = input */
/* configure as input */
SPI_1_MISO_DEV.DIRCLR.reg = 1 << SPI_1_MISO_PIN;
SPI_1_MISO_DEV.PINCFG[ SPI_1_MISO_PIN ].bit.INEN = true;
SPI_1_MISO_DEV.OUTCLR.reg = 1 << SPI_1_MISO_PIN;
SPI_1_MISO_DEV.PINCFG[SPI_1_MISO_PIN].bit.PULLEN = true;
dopo = SPI_1_DOPO;
dipo = SPI_1_DIPO;
break;
#endif
default:
return -1;
}
spi_dev->CTRLA.bit.ENABLE = 0; /* Disable spi to write confs */
while (spi_dev->SYNCBUSY.reg);
spi_dev->CTRLA.reg |= SERCOM_SPI_CTRLA_MODE_SPI_MASTER;
while (spi_dev->SYNCBUSY.reg);
spi_dev->BAUD.bit.BAUD = (uint8_t) (((uint32_t) SPI_0_F_REF) / (2 * f_baud) - 1); /* Syncronous mode*/
spi_dev->CTRLA.reg |= (SERCOM_SPI_CTRLA_DOPO(dopo))
| (SERCOM_SPI_CTRLA_DIPO(dipo))
| (cpha << SERCOM_SPI_CTRLA_CPHA_Pos)
| (cpol << SERCOM_SPI_CTRLA_CPOL_Pos);
while (spi_dev->SYNCBUSY.reg);
spi_dev->CTRLB.reg = (SERCOM_SPI_CTRLB_CHSIZE(0) | SERCOM_SPI_CTRLB_RXEN);
while(spi_dev->SYNCBUSY.reg);
spi_poweron(dev);
return 0;
}
int spi_init_slave(spi_t dev, spi_conf_t conf, char (*cb)(char))
{
/* TODO */
return 0;
}
void spi_transmission_begin(spi_t dev, char reset_val)
{
/* TODO*/
}
int spi_acquire(spi_t dev)
{
if (dev >= SPI_NUMOF) {
return -1;
}
mutex_lock(&locks[dev]);
return 0;
}
int spi_release(spi_t dev)
{
if (dev >= SPI_NUMOF) {
return -1;
}
mutex_unlock(&locks[dev]);
return 0;
}
int spi_transfer_byte(spi_t dev, char out, char *in)
{
SercomSpi* spi_dev = 0;
int transfered = 0;
switch(dev)
{
#ifdef SPI_0_EN
case SPI_0:
spi_dev = &(SPI_0_DEV);
break;
#endif
#ifdef SPI_1_EN
case SPI_1:
spi_dev = &(SPI_1_DEV);
break;
#endif
}
while (!spi_dev->INTFLAG.bit.DRE); /* while data register is not empty*/
spi_dev->DATA.bit.DATA = out;
transfered++;
if (in != NULL)
{
while (!spi_dev->INTFLAG.bit.RXC); /* while receive is not complete*/
*in = spi_dev->DATA.bit.DATA;
transfered++;
}
else
{
spi_dev->DATA.reg;
}
return transfered;
}
int spi_transfer_bytes(spi_t dev, char *out, char *in, unsigned int length)
{
int transfered = 0;
if (out != NULL) {
DEBUG("out*: %p out: %x length: %x\n", out, *out, length);
while (length--) {
int ret = spi_transfer_byte(dev, *(out)++, 0);
if (ret < 0) {
return ret;
}
transfered += ret;
}
}
if (in != NULL) {
while (length--) {
int ret = spi_transfer_byte(dev, 0, in++);
if (ret < 0) {
return ret;
}
transfered += ret;
}
DEBUG("in*: %p in: %x transfered: %x\n", in, *(in-transfered), transfered);
}
DEBUG("sent %x byte(s)\n", transfered);
return transfered;
}
int spi_transfer_reg(spi_t dev, uint8_t reg, char out, char *in)
{
spi_transfer_byte(dev, reg, NULL);
return spi_transfer_byte(dev, out, in);
}
int spi_transfer_regs(spi_t dev, uint8_t reg, char *out, char *in, unsigned int length)
{
spi_transfer_byte(dev, reg, NULL);
return spi_transfer_bytes(dev, out, in, length);
}
void spi_poweron(spi_t dev)
{
switch(dev) {
#ifdef SPI_0_EN
case SPI_0:
SPI_0_DEV.CTRLA.reg |= SERCOM_SPI_CTRLA_ENABLE;
while(SPI_0_DEV.SYNCBUSY.bit.ENABLE);
break;
#endif
#ifdef SPI_1_EN
case SPI_1:
SPI_1_DEV.CTRLA.reg |= SERCOM_SPI_CTRLA_ENABLE;
while(SPI_1_DEV.SYNCBUSY.bit.ENABLE);
break;
#endif
}
}
void spi_poweroff(spi_t dev)
{
switch(dev) {
#ifdef SPI_0_EN
case SPI_0:
SPI_0_DEV.CTRLA.bit.ENABLE = 0; /*Disable spi*/
while(SPI_0_DEV.SYNCBUSY.bit.ENABLE);
break;
#endif
#ifdef SPI_1_EN
case SPI_1:
SPI_1_DEV.CTRLA.bit.ENABLE = 0; /*Disable spi*/
while(SPI_1_DEV.SYNCBUSY.bit.ENABLE);
break;
#endif
}
}
#endif /* SPI_0_EN || SPI_1_EN */