mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2024-12-29 04:50:03 +01:00
235 lines
13 KiB
Plaintext
235 lines
13 KiB
Plaintext
/**
|
|
* @defgroup boards_slstk3400a Silicon Labs SLSTK3400A starter kit
|
|
* @ingroup boards
|
|
* @brief Support for Silicon Labs SLSTK3400A starter kit
|
|
|
|
## Overview
|
|
Silicon Labs EFM32 Happy Gecko Starter Kit is equipped with the EFM32
|
|
microcontroller. It is specifically designed for low-power applications, having
|
|
energy-saving peripherals, different energy modes and short wake-up times.
|
|
|
|
The starter kit is equipped with an Advanced Energy Monitor. This allows you to
|
|
actively measure the power consumption of your hardware and code, in real-time.
|
|
|
|
## Hardware
|
|
|
|
### MCU
|
|
| MCU | EFM32HG322F64 |
|
|
|-----------------|--------------------------------------------------------------------------------------------------|
|
|
| Family | ARM Cortex-M0PLUS |
|
|
| Vendor | Silicon Labs |
|
|
| Vendor Family | EFM32 Happy Gecko |
|
|
| RAM | 8.0 KiB |
|
|
| Flash | 64.0 KiB |
|
|
| EEPROM | no |
|
|
| Frequency | up to 24 MHz |
|
|
| FPU | no |
|
|
| MPU | no |
|
|
| DMA | 6 channels |
|
|
| Timers | 3x 16-bits |
|
|
| ADCs | 12-bit ADC |
|
|
| UARTs | 2x USART, 1x LEUART |
|
|
| SPIs | 2x USART |
|
|
| I2Cs | 1x |
|
|
| Vcc | 1.98 V - 3.8 V |
|
|
| Datasheet | [Datasheet](https://www.silabs.com/documents/public/data-sheets/efm32hg-datasheet.pdf) |
|
|
| Manual | [Manual](https://www.silabs.com/documents/public/reference-manuals/efm32hg-rm.pdf) |
|
|
| Board Manual | [Board Manual](https://www.silabs.com/documents/public/user-guides/ug255-stk3400-user-guide.pdf) |
|
|
| Board Schematic | Can be downloaded using Silicon Labs' Simplicity Studio |
|
|
|
|
### Pinout
|
|
This is the pinout of the expansion header on the right side of the board.
|
|
PIN 1 is the bottom-left contact when the header faces you horizontally.
|
|
|
|
| | PIN | PIN | |
|
|
|------|-----|-----|------|
|
|
| 3V3 | 20 | 19 | RES |
|
|
| 5V | 18 | 17 | RES |
|
|
| PD6 | 16 | 15 | PD7 |
|
|
| PD5 | 14 | 13 | PA1 |
|
|
| PD4 | 12 | 11 | PB11 |
|
|
| PE13 | 10 | 9 | PA2 |
|
|
| PE12 | 8 | 7 | PC2 |
|
|
| PE11 | 6 | 5 | PC1 |
|
|
| PE10 | 4 | 3 | PC0 |
|
|
| VMCU | 2 | 1 | GND |
|
|
|
|
**Note**: not all starter kits by Silicon Labs share the same pinout!
|
|
|
|
**Note:** some pins are connected to the board controller, when enabled!
|
|
|
|
### Peripheral mapping
|
|
| Peripheral | Number | Hardware | Pins | Comments |
|
|
|------------|---------|-----------------|-----------------------------------|----------------------------------------------------------|
|
|
| ADC | 0 | ADC0 | CHAN0: internal temperature | Ports are fixed, 14/16-bit resolution not supported |
|
|
| I2C | 0 | I2C0 | SDA: PD6, CLK: PD7 | `I2C_SPEED_LOW` and `I2C_SPEED_HIGH` clock speed deviate |
|
|
| HWCRYPTO | — | — | | AES128 |
|
|
| RTT | — | RTCC | | 1 Hz interval. Either RTT or RTC (see below) |
|
|
| RTC | — | RTCC | | 1 Hz interval. Either RTC or RTT (see below) |
|
|
| SPI | 0 | USART0 | MOSI: PE10, MISO: PE11, CLK: PE12 | |
|
|
| Timer | 0 | TIMER0 + TIMER1 | | TIMER0 is used as prescaler (must be adjecent) |
|
|
| UART | 0 | USART1 | RX: PA0, TX: PF2 | Default STDIO output |
|
|
| | 1 | LEUART0 | RX: PD5, TX: PD4 | Baud rate limited (see below) |
|
|
|
|
### User interface
|
|
| Peripheral | Mapped to | Pin | Comments |
|
|
|------------|-----------|------|------------|
|
|
| Button | PB0 | PC9 | |
|
|
| | PB1 | PC10 | |
|
|
| LED | LED0 | PF4 | Yellow LED |
|
|
| | LED1 | PF5 | Yellow LED |
|
|
|
|
## Implementation Status
|
|
| Device | ID | Supported | Comments |
|
|
|-------------------------------|-------------|-----------|----------------------------------------------------------------|
|
|
| MCU | EFM32HG | yes | Power modes supported |
|
|
| Low-level driver | ADC | yes | |
|
|
| | Flash | yes | |
|
|
| | GPIO | yes | Interrupts are shared across pins (see reference manual) |
|
|
| | HW Crypto | yes | |
|
|
| | I2C | yes | |
|
|
| | PWM | yes | |
|
|
| | RTC | yes | As RTT or RTC |
|
|
| | SPI | partially | Only master mode |
|
|
| | Timer | yes | |
|
|
| | UART | yes | USART is shared with SPI. LEUART baud rate limited (see below) |
|
|
| | USB | no | |
|
|
| LCD driver | LS013B7DH03 | yes | Sharp Low Power Memory LCD via the U8g2 package |
|
|
| Temperature + humidity sensor | Si7021 | yes | Silicon Labs Temperature + Humidity sensor |
|
|
|
|
## Board configuration
|
|
|
|
### Board controller
|
|
The starter kit is equipped with a Board Controller. This controller provides a
|
|
virtual serial port. The board controller is enabled via a GPIO pin.
|
|
|
|
By default, this pin is enabled. You can disable the board controller module by
|
|
passing `DISABLE_MODULE=silabs_bc` to the `make` command.
|
|
|
|
**Note:** to use the virtual serial port, ensure you have the latest board
|
|
controller firmware installed.
|
|
|
|
**Note:** the board controller *always* configures the virtual serial port at
|
|
115200 baud with 8 bits, no parity and one stop bit. This also means that it
|
|
expects data from the MCU with the same settings.
|
|
|
|
### Clock selection
|
|
There are several clock sources that are available for the different
|
|
peripherals. You are advised to read [AN0004.0](https://www.silabs.com/documents/public/application-notes/an0004.0-efm32-cmu.pdf)
|
|
to get familiar with the different clocks.
|
|
|
|
| Source | Internal | Speed | Comments |
|
|
|--------|----------|------------|------------------------------------|
|
|
| HFRCO | Yes | 14 MHz | Enabled during startup, changeable |
|
|
| HFXO | No | 24 MHz | |
|
|
| LFRCO | Yes | 32.768 kHz | |
|
|
| LFXO | No | 32.768 kHz | |
|
|
| ULFRCO | No | 1 kHz | Not very reliable as a time source |
|
|
|
|
The sources can be used to clock following branches:
|
|
|
|
| Branch | Sources | Comments |
|
|
|--------|-------------------------|-------------------|
|
|
| HF | HFRCO, HFXO | Core, peripherals |
|
|
| LFA | LFRCO, LFXO | Low-power timers |
|
|
| LFB | LFRCO, LFXO, CORELEDIV2 | Low-power UART |
|
|
|
|
CORELEDIV2 is a source that depends on the clock source that powers the core.
|
|
It is divided by 2 or 4 to not exceed maximum clock frequencies (EMLIB takes
|
|
care of this).
|
|
|
|
The frequencies mentioned in the tables above are specific for this starter
|
|
kit.
|
|
|
|
It is important that the clock speeds are known to the code, for proper
|
|
calculations of speeds and baud rates. If the HFXO or LFXO are different from
|
|
the speeds above, ensure to pass `EFM32_HFXO_FREQ=freq_in_hz` and
|
|
`EFM32_LFXO_FREQ=freq_in_hz` to your compiler.
|
|
|
|
You can override the branch's clock source by adding `CLOCK_LFA=source` to your
|
|
compiler defines, e.g. `CLOCK_LFA=cmuSelect_LFRCO`.
|
|
|
|
### Low-power peripherals
|
|
The low-power UART is capable of providing an UART peripheral using a low-speed
|
|
clock. When the LFB clock source is the LFRCO or LFXO, it can still be used in
|
|
EM2. However, this limits the baud rate to 9600 baud. If a higher baud rate is
|
|
desired, set the clock source to CORELEDIV2.
|
|
|
|
**Note:** peripheral mappings in your board definitions will not be affected by
|
|
this setting. Ensure you do not refer to any low-power peripherals.
|
|
|
|
### RTC or RTT
|
|
RIOT-OS has support for *Real-Time Tickers* and *Real-Time Clocks*.
|
|
|
|
However, this board MCU family has support for a 24-bit *Real-Time Counter*
|
|
only, which is a ticker only. A compatibility layer for ticker-to-calendar is
|
|
available, but this includes extra code size to convert from timestamps to time
|
|
structures and visa versa.
|
|
|
|
Configured at 1 Hz interval, the RTC will overflow each 194 days. When using
|
|
the ticker-to-calendar mode, this interval is extended artificially.
|
|
|
|
### Hardware crypto
|
|
This MCUs has support for hardware-accelerated AES128.
|
|
|
|
A peripheral driver interface is proposed, but not yet implemented.
|
|
|
|
### Usage of EMLIB
|
|
This port makes uses of EMLIB by Silicon Labs to abstract peripheral registers.
|
|
While some overhead is to be expected, it ensures proper setup of devices,
|
|
provides chip errata and simplifies development. The exact overhead depends on
|
|
the application and peripheral usage, but the largest overhead is expected
|
|
during peripheral setup. A lot of read/write/get/set methods are implemented as
|
|
inline methods or macros (which have no overhead).
|
|
|
|
Another advantage of EMLIB are the included assertions. These assertions ensure
|
|
that peripherals are used properly. To enable this, pass `DEBUG_EFM` to your
|
|
compiler.
|
|
|
|
### Pin locations
|
|
The EFM32 platform supports peripherals to be mapped to different pins
|
|
(predefined locations). The definitions in `periph_conf.h` mostly consist of a
|
|
location number and the actual pins. The actual pins are required to configure
|
|
the pins via GPIO driver, while the location is used to map the peripheral to
|
|
these pins.
|
|
|
|
In other words, these definitions must match. Refer to the data sheet for more
|
|
information.
|
|
|
|
## Flashing the device
|
|
To flash, [SEGGER JLink](https://www.segger.com/jlink-software.html) is
|
|
required.
|
|
|
|
Flashing is supported by RIOT-OS using the command below:
|
|
|
|
```
|
|
make flash
|
|
```
|
|
|
|
To run the GDB debugger, use the command:
|
|
|
|
```
|
|
make debug
|
|
```
|
|
|
|
Or, to connect with your own debugger:
|
|
|
|
```
|
|
make debug-server
|
|
```
|
|
|
|
Some boards have (limited) support for emulation, which can be started with:
|
|
|
|
```
|
|
make emulate
|
|
```
|
|
|
|
## Supported Toolchains
|
|
For using the Silicon Labs SLSTK3400A starter kit we strongly recommend
|
|
the usage of the [GNU Tools for ARM Embedded Processors](https://developer.arm.com/open-source/gnu-toolchain/gnu-rm)
|
|
toolchain.
|
|
|
|
## License information
|
|
* Silicon Labs' EMLIB: zlib-style license (permits distribution of source).
|
|
*/
|